
Федеральное государственное автономное образовательное

учреждение высшего образования

«Московский физико-технический институт

(национальный исследовательский университет)»

УТВЕРЖДЕНО

Директор физтех-школы

прикладной математики и

информатики

А.М. Райгородский

Рабочая программа дисциплины (модуля)

по дисциплине: Основы IT-технологий

по направлению: Прикладная математика и информатика

профиль подготовки: Искусственный интеллект и большие данные

 Сетевое обучение

 кафедра алгоритмов и технологий программирования

курс: 1,2

квалификация: бакалавр

Семестры, формы промежуточной аттестации:

2 (весенний) - Дифференцированный зачет

3 (осенний) - Дифференцированный зачет

Аудиторных часов: 120 всего, в том числе:

лекции: 60 час.

семинары: 60 час.

лабораторные занятия: 0 час.

Самостоятельная работа: 168 час.

Подготовка к экзамену: 0 час.

Всего часов: 288, всего зач. ед.: 8

Программу составил: В.В. Яковлев, канд. физ.-мат. наук, заведующий кафедрой

Программа обсуждена на заседании кафедры алгоритмов и технологий программирования

30.08.2022

Аннотация

Курс посвящен базовым вопросам обеспечения и организации качественной промышленной

разработки ПО и низкоуровневым аспектам разработки программного обеспечения для UNIX-

подобный операционных систем, а также отработки навыков написания программ и их

тестирования в предельных ситуациях.

Рассматриваются необходимые инструменты и технологии для организации сборки ПО,

тестирования, CI/CD процессов. Большое внимание уделяется базовым принципам

построения архитектуры ПО, паттернам и антипаттернам разработки. В рамках курса

слушатели выполняют ряд практических заданий по отдельным темам курса, а также

реализуют большое сквозное проектное задание.

В рамках данной дисциплины будут немного затронуто программирование на языках

ассемблера под архитектуры компьютеров ARM (32 бит) и x86, - в объеме, минимально

необходимом для понимания таких аспектов, как работа с памятью, соглашения о вызовах, и

способы системных вызовов.

После прохождения тем про язык ассемблера, оставшаяся часть курса будет посвящена

изучению системных вызовов для работы с памятью, файлами, процессами. Особое внимание

будет уделено механизмам межпроцессных взаимодействий: сигнала, каналам, разделяемой

памяти, и сетевому взаимодействию.

1. Цели и задачи

Цель дисциплины

овладение студентами технологических приемов, повсеместно применяемых при разработке

программного обеспечения. Познакомить студентов с базовыми принципами организации

внутренней организации компьютерных систем, с базовыми принципами организации

операционных систем, а также абстракций и интерфейсов, которые предоставляются

программисту для взаимодействия с операционной системой.

Задачи дисциплины

приобретение студентами навыков работы в командной строке, инструментами сборки и

системами контроля версий;

овладение студентами современными практиками разработки и типовыми шаблонами

проектирования.

задача дисциплины заключается в демонстрации базовых принципов на примере

операционных систем семейства UNIX и, частично, Windows.

2. Перечень формируемых компетенций

Освоение дисциплины направлено на формирование следующих компетенций:

Код и наименование компетенции Индикаторы достижения компетенции

УК-12 Способен формировать

нетерпимое отношение к проявлениям

экстремизма, терроризма,

коррупционному поведению и

противодействовать им в

профессиональной деятельности

УК-12.3 Осуществляет взаимодействие на

основе нетерпимого отношения к

коррупционному поведению в социальной и

профессиональной сферах

ОПК-2 Способен разрабатывать

алгоритмы и компьютерные программы,

пригодные для практического

применения

ОПК-2.1. Использует знания основных

положений и концепций в области

программирования, архитектуру языков

программирования, основную терминологию и

базовые алгоритмы, основные требования

информационной безопасности для

практического применения

ОПК-2.2. Анализирует типовые языки

программирования, составляет программы

ОПК-2.3 Применяет на практике опыт решения

задач с использованием базовых алгоритмов,

анализа типов коммуникаций и интеграции

различных типов программного обеспечения

3. Перечень планируемых результатов обучения по дисциплине (модулю)

В результате освоения дисциплины обучающиеся должны

знать:

шаблоны проектирования программного обеспечения; основы работы в UNIX-подобных

системах; основы низкоуровнего программирования; основы машинного кода, языков

ассемблера; различные пути повышения производительности программы; основы сетевого

взаимодействия; основы устройства сетей.

уметь:

работать с интерфейсом командной строки; выполнять сборку программ из исходных текстов

и их отладку, без использования интегрированных средств разработки; пользоваться

системами контроля версий; настраивать окружение для непрерывной интеграции разработки

проекта; проектировать программное обеспечение таким образом, чтобы его поддержка

осуществлялась коллективом из нескольких разработчиков; создавать многопоточные и

межсетевые программы на языках Си и Ассемблер; работать в unix-подобных средах;

создавать программы на языках Си и Ассемблер без использования высокоуровневых

библиотек.

владеть:

навыками работы с GitLab и GitLab CI навыками ведения простейших программных проектов

в системах контроля версий.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с

указанием отведенного на них количества академических часов и видов учебных

занятий

4.1. Разделы дисциплины (модуля) и трудоемкости по видам учебных занятий

№ Тема (раздел) дисциплины

Трудоемкость по видам учебных

занятий, включая самостоятельную

работу, час.

Лекции Семинары
Лаборат.

работы

Самост.

работа

1 Введение в ОС Linux 3 3 12

2 Системы контроля версий 3 3 13

3 Процесс компиляции 4 4 12

4 Организация процесса сборки 3 3 13

5 Кросс-компиляция и методы отладки 3 3 12

6 Порождающие паттерны проектирования 4 4 13

7 Структурные паттерны 3 3 12

8 Поведенческие паттерны 3 3 12

9 Модели 4 4 12

10 Низкоуровневые конструкции языка Си 16 16 28

11
Архитектура 32 и 64-разрядных систем ARM и

x86_64
14 14 29

Итого часов 60 60 168

Подготовка к экзамену 0 час.

Общая трудоёмкость 288 час., 8 зач.ед.

4.2. Содержание дисциплины (модуля), структурированное по темам (разделам)

Семестр: 2 (Весенний)

1. Введение в ОС Linux

- работа с командной строкой;

- организация файловой системы.

2. Системы контроля версий

- работа с ответвлениями;

- организация совместной работы.

3. Процесс компиляции

- стадии компиляции;

- промежуточные артефакты сборки и их исследование.

4. Организация процесса сборки

- сборка с помощью сценария Makefile;

- высокоуровневые системы сборки;

- непрерывная интеграция.

5. Кросс-компиляция и методы отладки

- кросс-компиляция для другой архитектуры процессора;

- кросс-компиляция для другой операционной системы;

- отладка программ с использованием средств виртуализации.

6. Порождающие паттерны проектирования

- синглетоны;

- фабричные методы;

- прототипы.

7. Структурные паттерны

- адаптеры;

- связки;

- композиты;

- прокси и декораторы.

8. Поведенческие паттерны

- стратегии;

- интерпретатор, итератор, состояние;

- стратегия «наблюдателя».

9. Модели

- паттерн «модель-контроллер-представление».

Семестр: 3 (Осенний)

10. Низкоуровневые конструкции языка Си

Введение в язык Си. Современный диалект языка Си (стандарт 2011 года). Отличия от С++,

размещение данных в памяти, выравнивание данных, структуры и объединения, указатели на

функции. Представление целых чисел. Обратный дополнительный код, битовые операции.

Знаковые и беззнаковые числа. Undefined Behaviour.

11. Архитектура 32 и 64-разрядных систем ARM и x86_64

Язык ассемблера ARM, базовые инструкции. Стек вызовов и вызов функций на ARM.

Представление вещественных чисел IEEE754. Программные прерывания и системные вызовы.

Ассемблер x86_64. Архитектура CISC v.s. RISC. gdb и objdump. Соглашения о вызовах x86_64.

Выравнивание данных и векторные инструкции SSE/AVX.

5. Описание материально-технической базы, необходимой для осуществления

образовательного процесса по дисциплине (модулю)

Учебная аудитория, оснащенная компьютером и мультимедийным оборудованием

(проектор, звуковая система).

6.Перечень рекомендуемой литературы

Основная литература

1. Компьютерные сети: принципы, технологии, протоколы [Текст] / В. Г. Олифер, Н. А.

Олифер - СПб.Питер,2016

2. Архитектура компьютера [Текст] : [учеб. пособие для вузов] / Э. Таненбаум, Т. Остин ;

[пер. с англ. Е. Матвеев] .— 6-е изд. — СПб. : Питер, 2014 .— 816 с

Дополнительная литература

1. Операционная система UNIX [Текст] : учеб. пособие для вузов / А. М. Робачевский .—

СПб. : БХВ-Петербург, 2000, 2002, 2003 .— 656 с.

7. Перечень ресурсов информационно-телекоммуникационной сети "Интернет",

необходимых для освоения дисциплины (модуля)

http://docs.oracle.com/javase/specs/jls/se8/html/index.html - The Java Language Specification.

https://google-styleguide.googlecode.com/svn/trunk/javaguide.html — Google Java Style Guide.

Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых

для освоения дисциплины (модуля)

1. https://git-scm.com/book/ru/v2

2. https://www.gnu.org/software/bash/manual/bash.html

8. Перечень информационных технологий, используемых при осуществлении

образовательного процесса по дисциплине (модулю), включая перечень необходимого

программного обеспечения и информационных справочных систем (при необходимости)

Учебная аудитория, оснащенная компьютером и мультимедийным оборудованием

(проектор, звуковая система).

Операционная система Linux с правами системного администратора.

Возможно использование системы через средства виртуализации.

Стандартные средства разработки, входящие в состав ОС Linux.

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное освоение курса требует напряжённой самостоятельной работы студента. В

программе курса приведено минимально необходимое время для работы студента над темой.

Самостоятельная работа включает в себя:

– проработку учебного материала (по конспектам лекций, учебной и научной литературе),

подготовку ответов на вопросы, предназначенных для самостоятельного изучения,

доказательство отдельных утверждений, свойств;

– подготовку к практическим занятиям, выполнение двух индивидуальных домашних заданий.

Промежуточный контроль знаний проводится в виде письменных опросов по теории, а также

студенту в ходе освоения курса необходимо выполнить две домашние индивидуальные

работы с их последующей защитой:

Зачет выставляется на основе работы на семинаре и выполнения домашних работ, либо, в

случае пересдачи комиссии, выполнения задания и его защиты комиссии.

Оценка за зачет выставляется из соотношения: 30% за теоретическую часть, и 70% - за

практическую.

Оценка за теоретическую часть - это среднее арифметическое, полученное из оценок на

письменных контрольных работах, по итогам каждого из разделов дисциплины.

Оценка за практическую часть - это оценка за выполнение семинарских и домашних заданий,

с учетом сроков сдачи.

Внимание: неудовлетворительная оценка за каждую из частей является БЛОКИРУЮЩЕЙ, то

есть, в случае неудовлетворительной оценки за теоретическую либо практическую часть,

итоговая оценка - неудовлетворительно.

Внимание: выполнение и сдача задач, разбираемых на семинарских занятиях, и задач

домашнего задания, помеченных как “обязательные” (как правило, по одной задаче в неделю)

является обязательным условием получения положительной оценки.

Все промежуточные расчеты оценки выполняются с точностью до второго знака после точки,

итоговая оценка выставляется по 10-балльной шкале, с округлением по стандартным

арифметическим правилам.

Дополнительная литература

Брайант Р.Э., О’Халларон Д.Р. Компьютерные системы: архитектура и программирование.

СПб.: БХВ, 2005. 1186 с.

ПРИЛОЖЕНИЕ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

по направлению: Прикладная математика и информатика

профиль подготовки: Искусственный интеллект и большие данные

 Сетевое обучение

кафедра алгоритмов и технологий

программирования

курс: 1,2

квалификация: бакалавр

Семестры, формы промежуточной аттестации:

2 (весенний) - Дифференцированный зачет

3 (осенний) - Дифференцированный зачет

Разработчик: В.В. Яковлев, канд. физ.-мат. наук, заведующий кафедрой

1. Компетенции, формируемые в процессе изучения дисциплины

Код и наименование компетенции Индикаторы достижения компетенции

УК-12 Способен формировать

нетерпимое отношение к проявлениям

экстремизма, терроризма,

коррупционному поведению и

противодействовать им в

профессиональной деятельности

УК-12.3 Осуществляет взаимодействие на основе

нетерпимого отношения к коррупционному

поведению в социальной и профессиональной

сферах

ОПК-2 Способен разрабатывать

алгоритмы и компьютерные программы,

пригодные для практического

применения

ОПК-2.1. Использует знания основных

положений и концепций в области

программирования, архитектуру языков

программирования, основную терминологию и

базовые алгоритмы, основные требования

информационной безопасности для

практического применения

ОПК-2.2. Анализирует типовые языки

программирования, составляет программы

ОПК-2.3 Применяет на практике опыт решения

задач с использованием базовых алгоритмов,

анализа типов коммуникаций и интеграции

различных типов программного обеспечения

2. Показатели оценивания компетенций

В результате изучения дисциплины «Основы IT-технологий» обучающийся должен:

знать:

шаблоны проектирования программного обеспечения; основы работы в UNIX-подобных

системах; основы низкоуровнего программирования; основы машинного кода, языков

ассемблера; различные пути повышения производительности программы; основы сетевого

взаимодействия; основы устройства сетей.

уметь:

работать с интерфейсом командной строки; выполнять сборку программ из исходных текстов

и их отладку, без использования интегрированных средств разработки; пользоваться

системами контроля версий; настраивать окружение для непрерывной интеграции разработки

проекта; проектировать программное обеспечение таким образом, чтобы его поддержка

осуществлялась коллективом из нескольких разработчиков; создавать многопоточные и

межсетевые программы на языках Си и Ассемблер; работать в unix-подобных средах;

создавать программы на языках Си и Ассемблер без использования высокоуровневых

библиотек.

владеть:

навыками работы с GitLab и GitLab CI навыками ведения простейших программных проектов

в системах контроля версий.

3. Перечень типовых (примерных) вопросов, заданий, тем для подготовки к текущему

контролю

Примеры контрольных заданий:

1. Написать программу, замеряющую время работы методов для нескольких стандартных

реализаций интерфейсов List и Map, с использованием Dynamic Proxy.

2. Написать класс-наследник класса String, реализующий интерфейс Iterable,

предоставляющий итератор со значениями типа char по своим символам.

3. Написать программу, которая скачивает 10 самых популярных страниц с сайта Хабрахабр и

подсчитывает суммарный рейтинг комментариев, сагрегированный по пользователям, с

использованием сторонней библиотеки парсинга HTML.

4. Написать программу, которая предоставляет консольный интерфейс для добавления

записей в базу данных книжного магазина с сущностями «Автор» и «Книга» (отношение один-

ко-многим между автором и книгами), с использованием сторонней библиотеки для работы с

базой данных sqlite3.

5. Написать программу, которая предоставляет консольный интерфейс для добавления

записей в базу данных книжного магазина с сущностями «Автор» и «Книга» (отношение один-

ко-многим между автором и книгами), с использованием сторонней библиотеки, реализующей

Object-Relation Mapping.

6. Написать программу, которая запрашивает у Foursquare API и выводит популярные кафе в

окрестности города, вводимого пользователем.

7. Написать программу, вычисляющую PageRank и найти ТОП 100 самых популярных страниц

в википедии (русскоязычной, англоязычной).

1. Реализуйте на языке ассемблера x86 (IA-32) или x86-64 функцию с сигнатурой:

extern double my_sin(double x)

которая вычисляет значение sin(x).

Запрещено использовать встроенные тригонометрические инструкции.

Для вычислений используйте известный вам из курса Математического анализа способ

разложения функции в ряд. Точность результата должна быть маскимально возможной для

типа данных double.

2. Программе в аргументе командной строки передается имя файла с бинарными данными в

Little-Endian.

Файл хранит внутри себя односвязный список элементов:

struct Item {

int value;

uint32_t next_pointer;

};

Поле value храние значение элемента списка, поле next_pointer - позицию в файле (в байтах),

указывающую на следующий элемент. Признаком последнего элемента является значение

next_pointer, равное 0.

Расположение первого элемента списка (если он существует) - строго в нулевой позиции в

файле, расположение остальных - случайным образом.

Выведите на экран значения элементов в списке в текстовом представлении.

Используйте отображение содержимого файла на память.

3.Программе задается единственный аргумент - номер TCP-порта.

Необходимо принимать входящие соединения на TCP/IPv4 для сервера localhost, читать

данные от клиентов в текстовом виде, и отправлять их обратно в текстовом виде, заменяя все

строчные буквы на заглавные. Все обрабатываемые символы - из кодировки ASCII.

Одновременных подключений может быть много. Использовать несколько потоков или

процессов запрещено.

Сервер должен корректно завершать работу при получении сигнала SIGTERM.

Указание: используйте неблокирующий ввод-вывод.

4. Перечень типовых (примерных) вопросов и тем для проведения промежуточной

аттестации обучающихся

Перечень контрольных вопросов:

1. Сборщик мусора.

2. Массивы, многомерные массивы.

3. Методы класса Object. Контракт equals()/hashCode().

4. Интерфейсы.

5. Исключения: иерархия исключений, перехват исключений, декларация throws.

6. Порядок инициализации объекта.

7. Java Reflection API. Dynamic proxy.

8. Юнит-тестирование, средства JUnit.

9. Аннотации.

10. Итераторы.

11. Сериализация средствами стандартной библиотеки.

12. Лямбда-функции.

13. TCP/IP в Java. HTTP-сервер средствами Java.

14. Многопоточность: примитивы синхронизации в языке.

15. Многопоточность: Java Memory Model.

16. Многопоточность: инструменты библиотеки java.util.concurrent.

17. Коллекции стандартной библиотеки, потокобезопасность коллекций.

18. Форматы XML, JSON, CSV.

19. Кодировки текстовых данных.

20. Система контроля версий git.

Примеры билетов:

№1

1. Юнит-тестирование, средства JUnit.

2. Написать программу, замеряющую время работы методов для нескольких стандартных

реализаций интерфейсов List и Map, с использованием Dynamic Proxy.

№2

1. TCP/IP в Java. HTTP-сервер средствами Java.

2. Написать класс-наследник класса String, реализующий интерфейс Iterable,

предоставляющий итератор со значениями типа char по своим символам.

1. Система Linux, виртуальная машина. Инструменты для написания, компиляции и отладки

программ.

2. Командный интерпретатор bash, написание shell-скриптов. Введение в язык Си.

3. Современный диалект языка Си (стандарт 2011 года). Отличия от С++, размещение данных

в памяти, выравнивание данных, структуры и объединения, указатели на функции.

4. Представление целых чисел. Обратный дополнительный код, битовые операции. Знаковые

и беззнаковые числа. Undefined Behaviour.

5. Язык ассемблера AVR, базовые конструкции; работа с регистрами и с памятью

6. Битовые операции на языке Си и ассемблере AVR; кодирование команд

7. Представление целых чисел, знаковые и беззнаковые числа, флаги переноса, длинная

арифметика

8. Стек вызовов и прерывания

9. Язык ассебмлера ARM, базовые инструкции.

10. Стек вызовов и вызов функций на ARM

11. Представление вещественных чисел IEEE754

12. Программные прерывания и системные вызовы

13. Ассемблер x86_64. Архитектура CISC v.s. RISC. gdb и objdump. Соглашения о вызовах

x86_64

14. Выравнивание данных и векторные инструкции SSE/AVX

15. Системные вызовы через int 0x80 и vdso (sysenter/syscall)

16. Файловые дескрипторы, open, read и write.

17. Системные вызовы POSIX для работы со временем: time, localtime, и пр. Проблема

потокобезопасности.

18. Системные вызовы stat, access, readdir.

19. Отображение ELF файла на память; системный вызов mmap

20. Позиционно-независимый код и dlopen/dlsym

21. Системные вызовы fork, exec, exit

22. pipe, mkfifo, dup2 и межпроцессное взаимодействие

23. mmap и POSIX shm в качестве межпроцессного взаимодействия

24. Сигналы BSD и UNIX System V

25. Файловые дескрипторы signalfd и timerfd; механизм epoll

26. Posix Threads, мьютексы, семафоры и atomic

27. Условные переменные

28. Сокеты UNIX качестве межпроцессного взаимодействия

29. Сокеты TCP/IP. Сетевое взаимодействие

30. Прикладной уровень OSI. Протокол HTTP/1.1

31. Механизм epoll/kqueue для обработки TCP/IP

32. Сообщения UDP

33. Представительский уровень OSI. Шифрование с использованием Open/LibreSSL.

Примеры билетов (первая часть, третий семестр):

1. Стек вызовов и вызов функций на ARM. Файловые дескрипторы, open, read и write.

2. Стек вызовов и прерывания. Отображение ELF файла на память; системный вызов mmap.

3. Выравнивание данных и векторные инструкции SSE/AVX. Позиционно-независимый код и

dlopen/dlsym.

Критерии оценивания

отлично

10 Полностью и вовремя решены все задачи без ошибок. Продемонстрирован грамотный

подход к решению задач, реализованы оптимальные алгоритмы, код оформлен в едином

удобочитаемом стиле

9 Полностью и вовремя решены все задачи без ошибок. Продемонстрирован грамотный

подход к решению задач, реализованы оптимальные алгоритмы

8 Полностью и вовремя решены все задачи без ошибок. Продемонстрирован грамотный

подход к решению задач

хорошо

7 Полностью решены все задачи. Допущены несущественные ошибки.

6 Полностью решено большинство задач. В некоторых задачах допущены и не исправлены

ошибки, либо некоторые задачи решены частично.

5 Полностью решено две трети задач. В некоторых задачах допущены и не исправлены

ошибки, либо некоторые задачи решены частично.

удовлетворительно

4 Полностью решено более половины задач. В остальных задачах допущены и не исправлены

ошибки, либо некоторые задачи решены частично.

3 Полностью решено более половины задач.

неудовлетворительно

2 Решено менее половины задач.

1 Не решено ни одной задачи.

5. Методические материалы, определяющие процедуры оценивания знаний, умений,

навыков и (или) опыта деятельности

Дифференцированный зачет может проводиться по итогам текущей успеваемости и сдачи

заданий, лабораторных и других видов работ, предусмотренных программой дисциплины и

(или) путем организации специального опроса, проводимого в устной и (или) письменной

форме, а также с выдачей заданий для реализации на компьютере.

