МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра радиоэлектроники и защиты информации

Авторы-составители: Поляков Виктор Борисович

Машкин Сергей Викторович Лунегов Игорь Владимирович

Рабочая программа дисциплины

ОРГАНИЗАЦИЯ ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Код УМК 68651

Утверждено Протокол №4 от «24» июня 2021 г.

1. Наименование дисциплины

Организация ЭВМ и вычислительных систем

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в обязательную часть Блока « С.1 » образовательной программы по направлениям подготовки (специальностям):

Специальность: 10.05.03 Информационная безопасность автоматизированных систем направленность Безопасность открытых информационных систем

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Организация ЭВМ и вычислительных систем** у обучающегося должны быть сформированы следующие компетенции:

- 10.05.03 Информационная безопасность автоматизированных систем (направленность : Безопасность открытых информационных систем)
- **ОПК.15** Способен анализировать физическую сущность явлений и процессов, лежащих в основе функционирования микроэлектронной техники, применять основные физические законы и модели для решения задач профессиональной деятельности

Индикаторы

- **ОПК.15.2** Применяет знания физических основ современных информационнотелекоммуникационных технологий для решения профессиональных задач
- **ПК.1** Способен использовать языки, системы, инструментальные, программные и аппаратные средства для моделирования информационных систем и испытаний систем защиты

Индикаторы

- **ПК.1.3** Анализирует эффективность решений по обеспечению информационной безопасности автоматизированных систем
- **ПК.2** Способен выбирать и моделировать архитектурные решения для реализации интегрированного программного обеспечения

Индикаторы

- **ПК.2.1** Определяет перечень элементов архитектуры, которые должны быть защищены от угроз безопасности информации
- **ПК.2.2** Разрабатывает архитектуры программного обеспечения интегрированной программной системы, в соответствии с требованиями конфиденциальности, целостности и доступности

4. Объем и содержание дисциплины

Специальность	10.05.03 Информационная безопасность автоматизированных
	систем (направленность: Безопасность открытых
	информационных систем)
форма обучения	очная
№№ триместров,	8
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	4
Объем дисциплины (ак.час.)	144
Контактная работа с	56
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	28
занятий	
Проведение лабораторных	28
работ, занятий по	
иностранному языку	
Самостоятельная работа	88
(ак.час.)	
Формы текущего контроля	Защищаемое контрольное мероприятие (2)
	Итоговое контрольное мероприятие (1)
Формы промежуточной	Экзамен (8 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Организация ЭВМ и вычислительных систем. Первый семестр

Дисциплина нацелена на формирование профессиональной компетенции выпускника: способность применять на практике базовых профессиональных навыков при решении исследовательских задач, использовать ЭВМ для профессиональной деятельности. Содержание дисциплины охватывает круг проблем, связанных с общими принципами построения электронной вычислительной машины, определяющих проведение обработки информации и включающих методы преобразования информации в данные, принципы взаимодействия технических средств и программного обеспечения. Программой дисциплины предусмотрены следующие виды контроля: входной контроль в форме устного опроса, рубежный контроль в форме защиты лабораторных работ, контроля самостоятельной работы студентов в письменной форме. Аттестация по усвоению содержания дисциплины проводится в форме экзамена. Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа. Программой дисциплины предусмотрены лекционные (34 часа), лабораторные (68 часов) занятия и самостоятельная работа студента (42 часа).

Введение. История развития вычислительных систем

История развития вычислительной техники. ЭВМ и компьютеры (поколения ЭВМ).

Кодирование данных

Основные типы данных и их машинное представление. Основные операции (арифметические и логические)

Микропроцессоры.

Принстонская архитектура. Гарвардская архитектура. Состав микропроцессора (АЛУ, РОН, УУ). Циклы шины. Опрос, полинг, прерывание, ПДП. Система команд микропроцессора. Способы адресации. Классификация по системе команд RISC, CISC, MISC, VLIW процессоры.

Основная память компьютера

Основные характеристики памяти. Классификация памяти (с произвольным доступом, с последовательным доступом, ассоциативная). ПЗУ, Статическая, динамическая, флеш, FRAM память. Кэш память.

Устройства хранения

Накопители информации Floppy, HDD, SSD, CD, DVD, BlueRay. Дисковые массивы JBOD, RAID. Основные интерфейсы для систем хранения данных.

Устройства ввода-вывода

Устройства ввода-вывода: (системная логика): котроллер прерываний, контроллер ПДП, часы реального времени, контроллер клавиатуры и т.д.

Периферийные устройства: Клавиатура, манипулятор мышь, сканеры, дигитайзеры. Мониторы. Видеоадаптеры. Печатающие устройства.

Параллельные компьютерные системы

Мультипроцессорные системы. Сильно и слабосвязанные многопроцессорные системы. Разделяемые ресурсы.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Архитектура ЭВМ и систем : учебное пособие / Ю. Ю. Громов, О. Г. Иванова, М. Ю. Серегин [и др.]. Тамбов : Тамбовский государственный технический университет, ЭБС АСВ, 2012. 200 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/64069.html
- 2. Новожилов, О. П. Архитектура компьютерных систем в 2 ч. Часть 2 : учебное пособие для среднего профессионального образования / О. П. Новожилов. Москва : Издательство Юрайт, 2020. 246 с. (Профессиональное образование). ISBN 978-5-534-10301-4. Текст : электронный // ЭБС Юрайт [сайт]. https://urait.ru/bcode/456522
- 3. Новожилов, О. П. Архитектура компьютерных систем в 2 ч. Часть 1 : учебное пособие для среднего профессионального образования / О. П. Новожилов. Москва : Издательство Юрайт, 2020. 276 с. (Профессиональное образование). ISBN 978-5-534-10299-4. Текст : электронный // ЭБС Юрайт [сайт]. https://urait.ru/bcode/456521
- 4. Лиманова, Н. И. Архитектура вычислительных систем и компьютерных сетей: учебное пособие / Н. И. Лиманова. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2017. 197 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/75368.html

Дополнительная:

- 1. Архитектуры и топологии многопроцессорных вычислительных систем: учебник / А. В. Богданов, В. В. Корхов, В. В. Мареев, Е. Н. Станкова. 3-е изд. Москва, Саратов: Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. 135 с. ISBN 978-5-4497-0322-4. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/89420.html
- 2. Архитектура и технологии IBM @Server zSeries : учебное пособие / В. А. Варфоломеев, Э. К. Лецкий, М. И. Шамров, В. В. Яковлев ; под редакцией Э. К. Лецкого, В. В. Яковлева. 3-е изд. Москва : Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. 637 с. ISBN 978-5-4497-0650-8. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. http://www.iprbookshop.ru/97537.html
- 3. Алабужев А. А. Архитектура параллельных ЭВМ:учебно-методическое пособие/А. А. Алабужев.-Пермь, 2007, ISBN 5-7944-0928-2.-89.-Библиогр.: с. 79
- 4. Параллельные вычисления на GPU. Архитектура и программная модель CUDA: учебное пособие / А. В. Боресков, А. А. Харламов, Н. Д. Марковский [и др.]. Москва: Московский государственный университет имени М.В. Ломоносова, 2015. 336 с. ISBN 978-5-19-011058-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/54647.html

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://in.psu.ru/elis/ электронная библиотека ELiS

https://www.lektorium.tv/lecture/14649 Архитектура ЭВМ и основы ОС.

https://nasm.us/ Ассемблер NASM (Netwide Assembler) для микропроцессоров с архитектурой х86

https://www.oracle.com/virtualization/technologies/vm/downloads/virtualbox-downloads.html

Виртуальная машина ORACLE VM VirtualBox

https://notepad-plus-plus.org/ Текстовый редактор NOTEPAD++

https://mh-nexus.de/en/ Шестнадцатиричный редактор HxD

https://www.freedos.org/download/ Образ загрузочной дискеты - FreeDOS.

https://mh-nexus.de/en/ Шестнадцатиричный редактор HxD

https://parallel.ru/computers Высокопроизводительные компьютеры

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Организация ЭВМ и вычислительных систем** предполагает использование следующего программного обеспечения и информационных справочных систем:

- 1) презентационные материалы (слайды по темам лекционных и практических занятий);
- 2) доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- 3) доступ в электронную информационно-образовательную среду университета;
- 4) интернет-сервисы и электронные ресурсы (поисковые системы, электронная почта);

Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения

Виртуальные машины Oracle VM VirtualBox, DOSBox и др.

Пакеты офисных программ (тестовые редакторы, табличные редакторы, программы для создания презентаций и т.д.).

C++ Builder или C#, MS Visual Studio с фреймворком .net минимум версии 4.0 ассемблер NASM и т.д.

Операционная система ALT Linux;

Офисный пакет приложений «LibreOffice».

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для проведения лекционных занятий:

Аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения лабораторных занятий – Лаборатория «Архитектуры ЭВМ», оснащенная специализированным оборудованием и наглядными пособиями. Состав оборудования определен в Паспорте лаборатории

Аудитории для проведения текущего контроля, для групповых (индивидуальных) консультаций: Аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Аудитория для самостоятельной работы:

Аудитория оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченная доступом в электронную информационно-образовательную среду университета. Помещения Научной библиотеки ПГНИУ

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Организация ЭВМ и вычислительных систем

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.15

Способен анализировать физическую сущность явлений и процессов, лежащих в основе функционирования микроэлектронной техники, применять основные физические законы и молели для решения задач профессиональной деятельности

Компетенция	задач профессиональной дея Планируемые результаты	Критерии оценивания результатов
(индикатор)	обучения	обучения
ОПК.15.2	знать: - физические принципы,	Неудовлетворител
Применяет знания	лежащие в основе	Не знает физических принципов, лежащих в
физических основ	функционирования	основе функционирования
современных	микроэлектронной техники,	микроэлектронной техники, базовых
информационно-	базовых полупроводниковых	полупроводниковых элементов,
телекоммуникационных	элементов, схемотехнических	схемотехнических решений и технологий,
технологий для	решений и технологий,	используемых в цифровой технике. Не умеет
решения	используемых в цифровой	проектировать базовые схемотехнические
профессиональных	технике; уметь: -	решения. Не владеет фундаментальными
задач	проектировать базовые	понятиями в области микроэлектроники и
	схемотехнические решения.	электротехники.
	владеть: - применять	Удовлетворительн
	фундаментальных понятий в	Частично сформированы знания физических
	области микроэлектроники и	принципов, лежащих в основе
	электротехники.	функционирования микроэлектронной
		техники, базовых полупроводниковых
		элементов, схемотехнических решений и
		технологий, используемых в цифровой
		технике. Частично сформировано умение
		проектировать базовые схемотехнические
		решения. Посредственное владение
		фундаментальными понятиями в области
		микроэлектроники и электротехники.
		Хорошо
		Сформированные, но содержащее пробелы
		знания физических принципов, лежащих в
		основе функционирования
		микроэлектронной техники, базовых
		полупроводниковых элементов,
		схемотехнических решений и технологий,
		используемых в цифровой технике.
		Сформированное, но содержащее пробелы
		умение проектировать базовые
		схемотехнические решения. Не уверенное
		владение фундаментальными понятиями в

Компетенция	Планируемые результаты	Критерии оценивания результатов
(индикатор)	обучения	обучения
		Хорошо
		области микроэлектроники и
		электротехники.
		Отлично
		Сформированные знания физических
		принципов, лежащих в основе
		функционирования микроэлектронной
		техники, базовых полупроводниковых
		элементов, схемотехнических решений и
		технологий, используемых в цифровой
		технике. Сформированные умения
		проектировать базовые схемотехнические
		решения. Уверенное владение
		фундаментальными понятиями в области
		микроэлектроники и электротехники.

ПК.1 Способен использовать языки, системы, инструментальные, программные и аппаратные средства для моделирования информационных систем и испытаний систем защиты

Компетенция	Планируемые результаты	Критерии оценивания результатов
(индикатор)	обучения	обучения
ПК.1.3	знать - машинное	Неудовлетворител
Анализирует	представление данных,	Отсутствие ответов на контрольные вопросы
эффективность	кодирование символьных	по курсу.
решений по	данных основные подсистемы	Непонимание терминологии, используемой в
обеспечению	вычислительных комплексов:	данном курсе.
информационной	микропроцессор, память,	
безопасности	устройства ввода-вывода,	Удовлетворительн
автоматизированных	системные шины; -	Неполное раскрытие материала по
систем	современные тенденции	контрольному вопросу.
	построения вычислительных	Затруднения в практическом применении
	систем и принципы	знаний и изложении материала по
	конфигурирования	контрольному вопросу.
	вычислительных систем под	Понимание терминологии, используемой в
	прикладные задачи. уметь: -	данном курсе.
	программировать внешние	
	устройства, прерывания, ввод-	Хорошо
	вывод. владеть: -	Логичное, последовательное изложение
	фундаментальными понятиями	ответа на контрольные вопросы по курсу.
	аппаратной части	Свободное владение терминологией,
	вычислительных систем,	используемой в данном курсе.
	понимать назначение и	
	принципы построения базовых	Отлично
	подсистем с оптимальными	Полное, логичное, последовательное
	параметрами, понимать основы	изложение ответа на контрольные вопросы

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
	программирования доступа к подсистемам на самом низком уровне, используя язык ассемблера и отладчик - проводить контрольные проверки работоспособности и эффективности применяемых программно-аппаратных, криптографических и технических средств защиты информации	Отлично по курсу. Приведение примеров использования знаний по курсу на практике. Свободное владение терминологией, используемой в данном курсе.
ПК.1.3 Анализирует эффективность решений по обеспечению информационной безопасности автоматизированных систем	знать основных подсистем ЭВМ: микропроцессор, память, устройства ввода-вывода, системные шины; уметь программировать на системном уровне; владеть фундаментальными понятиями аппаратной и программной частями вычислительных систем	Не знает основные подсистемы ЭВМ: микропроцессор, память, устройства вводавывода, системные шины; не умеет программировать на системном уровне; не владеет фундаментальными понятиями аппаратной и программной частями вычислительных систем Удовлетворительн Частично сформированы знания по основным подсистемам ЭВМ: микропроцессор, память, устройства вводавывода, системные шины; частично сформировано умение программировать на системном уровне; Посредственное владение фундаментальными понятиями аппаратной и программной частями вычислительных систем Хорошо Сформированы знания содержат пробелы по основным подсистемам ЭВМ: микропроцессор, память, устройства вводавывода, системные шины; Сформированные умения содержат пробелы при программировании на системном уровне; Неуверенное владение фундаментальными понятиями аппаратной и программной частями вычислительных систем Отлично Сформированы знания по основным подсистемам ЭВМ: микропроцессор, память, устройства ввода-вывода, системные шины; умеет программировать на системном уровне; Уверенное владение

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		фундаментальными понятиями аппаратной и
		программной частями вычислительных
		систем

ПК.2 Способен выбирать и моделировать архитектурные решения для реализации интегрированного программного обеспечения

интегрированного программного обеспечения			
Компетенция	Планируемые результаты	Критерии оценивания результатов обучения	
(индикатор)	обучения	ооучения	
ПК.2.1	знать машинное представление	Неудовлетворител	
Определяет перечень	данных, кодирование	не знает машинное представление данных,	
элементов архитектуры,	символьных данных; уметь	кодирование символьных данных; не умеет	
которые должны быть	программировать внешние	программировать внешние устройства,	
защищены от угроз	устройства, прерывания, ввод-	прерывания, ввод-вывод; не владеет	
безопасности	вывод; владеть	фундаментальными понятиями аппаратной	
информации	фундаментальными понятиями	части вычислительных систем	
	аппаратной части	Удовлетворительн	
	вычислительных систем	частично сформированные знания	
		машинного представления данных,	
		кодирования символьных данных; частично	
		сформированное умение программировать	
		внешние устройства, прерывания, ввод-	
		вывод; посредственное владение	
		фундаментальными понятиями аппаратной	
		части вычислительных систем	
		Хорошо	
		Сформированные, но содержащие пробелы	
		знания машинного представления данных,	
		кодирования символьных данных;	
		Сформированное, но содержащие пробелы	
		умение программировать внешние	
		устройства, прерывания, ввод-вывод;	
		Неуверенное владение фундаментальными	
		понятиями аппаратной части	
		вычислительных систем	
		Отлично	
		Сформированные знания машинного	
		представления данных, кодирования	
		символьных данных; Сформированное	
		умение программировать внешние	
		устройства, прерывания, ввод-вывод;	
		Уверенное владение фундаментальными	
		понятиями аппаратной части	

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		вычислительных систем
ПК.2.2	знать: современные тенденции	Неудовлетворител
Разрабатывает	построения вычислительных	не знает современные тенденции построения
архитектуры	систем и принципы	вычислительных систем и принципы
программного	конфигурирования	конфигурирования вычислительных систем
обеспечения	вычислительных систем под	под прикладные задачи. не умеет:
интегрированной	прикладные задачи. уметь:	программировать на системном уровне. не
программной системы,	программировать на системном	владеет: - фундаментальными понятиями
в соответствии с	уровне. владеть: -	аппаратной части вычислительных систем,
требованиями	фундаментальными понятиями	не понимает назначение и принципы
конфиденциальности,	аппаратной части	построения базовых подсистем с
целостности и	вычислительных систем,	оптимальными параметрами, не понимает
доступности	понимать назначение и	основы программирования доступа к
	принципы построения базовых	подсистемам на системном уровне,
	подсистем с оптимальными	используя язык ассемблера и отладчик -
	параметрами, понимать основы	проводить контрольные проверки
	программирования доступа к	работоспособности и эффективности
	подсистемам на системном	применяемых программно-аппаратных,
	уровне, используя язык	криптографических и технических средств
	ассемблера и отладчик -	защиты информации
	проводить контрольные	Удовлетворительн
	проверки работоспособности и	Частично сформированые знания о
	эффективности применяемых	современных тенденциях построения
	программно-аппаратных,	вычислительных систем и принципах
	криптографических и	конфигурирования вычислительных систем
	технических средств защиты	под прикладные задачи. Частично
	информации	сформировано умение программировать на
		системном уровне. посредственное владение
		фундаментальными понятиями аппаратной
		части вычислительных систем,
		посредственное понимание назначения и
		принципов построения базовых подсистем с
		оптимальными параметрами, посредственное
		понимание основ программирования доступа
		к подсистемам на системном уровне,
		используя язык ассемблера и отладчик;
		посредственное проведение контрольных
		тестов работоспособности и эффективности
		применяемых программно-аппаратных, криптографических и технических средств
		защиты информации
		защиты информации Хорошо
		хорошо Сформированы, но содержащие пробелы,
		знания о современных тенденциях
		энания о собрешенных тенденциях

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Хорошо
		построения вычислительных систем и
		принципах конфигурирования
		вычислительных систем под прикладные
		задачи. Сформированы, но содержащие
		пробелы, умения программировать на
		системном уровне. Неуверенное владение
		фундаментальными понятиями аппаратной
		части вычислительных систем, уверенное
		понимание назначения и принципов
		построения базовых подсистем с
		оптимальными параметрами, неуверенное
		понимание основ программирования доступа
		к подсистемам на системном уровне,
		используя язык ассемблера и отладчик;
		неуверенное проведение контрольных тестов
		работоспособности и эффективности
		применяемых программно-аппаратных,
		криптографических и технических средств
		защиты информации
		Отлично
		Сформированы знания о современных
		тенденциях построения вычислительных
		систем и принципах конфигурирования
		вычислительных систем под прикладные
		задачи. Сформировано умение
		программировать на системном уровне.
		Уверенное владение фундаментальными
		понятиями аппаратной части
		вычислительных систем, уверенное
		понимание назначения и принципов
		построения базовых подсистем с
		оптимальными параметрами, уверенное
		понимание основ программирования доступа
		к подсистемам на системном уровне,
		используя язык ассемблера и отладчик;
		уверенное проведение контрольных тестов
		работоспособности и эффективности
		применяемых программно-аппаратных,
		криптографических и технических средств
		защиты информации

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: СУОС

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100

«**хорошо**» - от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.1.3	Основная память	знать- машинное представление данных,
Анализирует эффективность	компьютера	кодирование данных и команд-
решений по обеспечению	Защищаемое контрольное	основные подсистемы вычислительных
информационной безопасности	мероприятие	комплексов: Процессор, память,
автоматизированных систем ПК.2.1		видеоподсистему, подсистему устройств
Определяет перечень элементов		ввода-вывода;- современные тенденции
архитектуры, которые должны		построения вычислительных систем,
быть защищены от угроз		правила конфигурирования под
безопасности информации		конкретные задачи и перспективы
ОПК.15.2		развития вычислительной техники.
Применяет знания физических		
основ современных		
информационно-		
телекоммуникационных		
технологий для решения		
профессиональных задач		

Спецификация мероприятий текущего контроля

Основная память компьютера

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	
доклад (презентация) по предложенной теме выполнен и представлен публичнотема	30
раскрыта полностью автор свободно владеет представленным материалом	
доклад (презентация) по предложенной теме выполнентема раскрыта не полностью.	
доклад (презентация) по предложенной теме не выполнен.	12

Устройства ввода-вывода

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы самостоятельной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Выполнение всех лабораторных работ в полном объёме	30
Выполнение всех лабораторных работ в основном	20
Лабораторные работы не выполнены	12

Параллельные компьютерные системы

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Свободное владение материалом, системное изложение материала по вопросу КТ, знание и	40
правильное применение терминологии, применение знаний на практике.	
Владение терминологией, знание принципов построения вычислительной	27
техники.применение знаний на практике.	
Неполный ответ на вопросы. Знание материала в основном. Знание основных терминов и	20
принципов организации вычислительной техники.	
Отсутствие ответа или неверный ответ на поставленные вопросы, неверное использование	17
терминологии по предмету	