МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра ботаники и генетики растений

Авторы-составители: Боронникова Светлана Витальевна

Васильева Юлия Сергеевна

Рабочая программа дисциплины

НОВЫЕ ГЕНЕТИЧЕСКИЕ ТЕХНОЛОГИИ И БИОБЕЗОПАСНОСТЬ

Код УМК 94768

Утверждено Протокол №11 от «17» мая 2021 г.

1. Наименование дисциплины

Новые генетические технологии и биобезопасность

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « М.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 06.04.01 Биология

направленность Генетика

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Новые генетические технологии и биобезопасность** у обучающегося должны быть сформированы следующие компетенции:

06.04.01 Биология (направленность : Генетика)

ОПК.5 Способен участвовать в создании и реализации новых технологий в сфере профессиональной деятельности и контроле их экологической безопасности с использованием живых объектов

Индикаторы

ОПК.5.1 Участвует в создании и реализации новых технологий в сфере профессиональной деятельности

ПК.1 Способен осуществлять научно-исследовательскую деятельность в соответствии с направленностью (профилем) программы магистратуры выполнять эксперименты и оформлять результаты исследований и разработок

Индикаторы

ПК.1.2 применяет существующие методики и знания в области биологических наук в локальном исследовании

4. Объем и содержание дисциплины

Направления подготовки	06.04.01 Биология (направленность: Генетика)
форма обучения	очная
№№ триместров,	5
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	5
Объем дисциплины (ак.час.)	180
Контактная работа с	60
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	12
занятий	
Проведение практических	48
занятий, семинаров	
Самостоятельная работа	120
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (2)
Формы промежуточной	Экзамен (5 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Новые генетические технологии

Проведение входного контроля

Оценка знания студентами практических и теоретических основ молекулярно-генетического анализа, владения методами теоретической разработки и экспериментальных исследований в области генетических технологий.

Тема 1. Полимеразная цепная реакция и ПЦР в реальном времени.

Основы ПЦР. Отличия ПЦР в реальном времени от ПЦР. Флюорохромы. Детекция сигнала. Кривые плавления. Базовая линия. Подсчет числа цикла амплификации и перевод в количественные показатели. Стандарты. Валидность результатов. Подготовка смесей для ПЦР. Заполнение плашки. Программы ПЦР в реальном времени для разных объектов. Количественное исследование генетического материала: последовательностей ДНК заданной структуры, генетических полиморфизмов, мутаций в образцах прокариотических и эукариотических организмов, животных, человека. Определение концентрации ампликона в неизвестном образце. Анализ протоколов ПЦР в реальном времени. HRM (High Resolution Melting) для исследования тонких генетических изменений, таких как однонуклеотидные полиморфизмы (SNP), степени метилирования ДНК, после проведения процедуры амплификации.

Тема 2. Определение нуклеотидной последовательности (секвенирование ДНК).

Метод Сенгера. Научно-методические основы секвенирования. Подготовка проб. Подбор праймеров. Секвенцовая реакция. Гель-электрофорез в генетическом анализаторе. Процесс секвенирования. Чтение протоколов. Значение секвенирования для развития биологии и медицины.

Тема 3. Технология биочипов (Microarray).

Научно-методические основы биочипов. Типы ДНК-биочипов в зависимости от размера, от материала поверхности, от длины фрагментов ДНК. Способы изготовления биочипов: фотолитография in situ, контактная печать, бесконтактная или струйная печать. Общая схема биочип-технологии. Исследование экспрессии генов с использованием микроматриц ДНК. Оборудование системы Microarray: контактная система для печати биочипов «SpotArray 24» (Perkin Elmer, США), конфокальный лазерный сканер для сканирования биочипов «ScanArray Gx.» (Perkin Elmer, США), гибридизационная камера. Программное обеспечение. Изготовление и сканирование биочипов на примере модельного генетического объекта Arabidopsis. Перспективы и применение ДНК-биочипов в биологии и медицине.

Биобезопасность

Тема 4. Технологии рекомбинантных молекул ДНК.

Клонирование ДНК. Ферменты для генетической инженерии. Конструирование рекомбинантных ДНК. Векторы. Методы получения и отбора рекомбинантных ДНК. Способы введения рекомбинантных ДНК в клетку. Системы экспрессии рекомбинантных генов.

Тема 5. Проблемы использования генетически модифицированных организмов.

Биологическая безопасность и биобезопасность, риск при производстве и использованиии Γ MO, распространение Γ MO в мире и система оценки безопасности Γ MO.

Генно-инженерно-модифицированные микроорганизмы. Контроль биобезопасности продуктов фармокологической и пищевой промышленности.

Тема 6. Основы биобезопасности.

Законодательная база биобезопасности и биологической безопасности в России: Федеральный закон «Об охране окружающей среды» от 10.01.2002 №7-ФЗ, ст. 50. «Охрана окружающей среды от негативного биологического воздействия». Федеральный закон «О государственном регулировании в

области генно-инженерной деятельности» от 05.07.1996 №86-ФЗ. Постановление «О надзоре за оборотом пищевых продуктов, содержащих ГМО» от 30.11.2007 №80 (Российская газета №4602 от 01.03.2008).

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Генная инженерия в биотехнологии (семинары):учебное пособие/Г. А. Журавлева [и др.].-2-е изд., перераб. и доп..-Санкт-Петербург:Эко-Вектор,2019, ISBN 978-5-906648-98-3.-135.-Библиогр.: с. 134-135
- 2. Ермишин, А. П. Генетически модифицированные организмы и биобезопасность / А. П. Ермишин. Минск: Белорусская наука, 2013. 172 с. ISBN 978-985-08-1592-7. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/29440
- 3. Актуальные проблемы генетики: учебное пособие для студентов биологического факультета/Министерство образования и науки Российской Федерации, Пермский государственный национальный исследовательский университет. -Пермь, 2013, ISBN 978-5-7944-2278-8.-126.-Библиогр.: с. 104-111

Дополнительная:

- 1. Падутов В. Е., Баранов О. Ю., Воропаев Е. В. Методы молекулярно-генетического анализа: учебно-методическое пособие для студентов медицинских и биологических специальностей вузов/В. Е. Падутов, О. Ю. Баранов, Е. В. Воропаев.-Минск:Юнипол, 2007, ISBN 978-985-6768-12-8.-176.-Библиогр.: с. 138-167
- 2. Боронникова С. В. Новые генетические технологии и биобезопасность: учебное пособие для студентов, обучающихся по магистерской программе "Генетика" направления подготовки "Биология"/С. В. Боронникова.-Пермь, 2012, ISBN 978-5-7944-2072-2.-143.
- 3. Генетические основы селекции растений. Том 4. Биотехнология в селекции растений. Геномика и генетическая инженерия / О. Ю. Урбанович, П. В. Кузмицкая, Н. А. Картель [и др.]; под редакцией А. В. Кильчевский, Л. В. Хотылева. Минск: Белорусская наука, 2014. 654 с. ISBN 978-985-08-1791-4. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/29578

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

https://www.ncbi.nlm.nih.gov/Genbank/ Национальный центр биотехнологической информации https://www.nlm.gov.bsd/pmresources.html Библиографическая база данных MEDLINE

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Новые генетические технологии и биобезопасность** предполагает использование следующего программного обеспечения и информационных справочных систем:

- презентационные материалы (слайды по темам лекционных и практических занятий);
- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета.

Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения:

- 1) офисный пакет приложений (текстовый процессор, программа для подготовки электронных презентаций):
- 3) приложение, позволяющее просматривать и воспроизводить медиаконтент PDF-файлов;
- 4) программы для просмотра и редактирования цифровых изображений;
- 5) программы для просмотра и редактирования DjVu-файлов.

Перечень необходимых лицензионныхи (или) свободно распространяемых программ специального назначения:

- 1) Программы к прибору Real-Time CFX 96 CFX Manager Softwar.
- 2) Программа прибора ИК-фурье спектрометр Image Seguense Scaner.
- 3) Пакет программ прибора секвенатор Genetic Analyzer 3500xL.
- 4) Программа прибора Gel Doc XR -GantityOne.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для проведения лекционных занятий необходима учебная аудитория, оснащенная специализированной мебелью, демонстрационным оборудованием (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий необходима "Молекулярно-генетическая (ПЦР) лаборатория", оснащенная специализированной мебелью, необходимым лабораторным оборудованием, аппаратными и программными средствами. Состав оборудования, аппаратных и программных средств представлен в

паспорте лаборатории.

Для самостоятельной работы необходимы помещения Научной библиотеки ПГНИУ. Помещения Научной библиотеки ПГНИУ, обеспечивают доступ к локальной и глобальной сетям.

Для проведения мероприятий текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций необходима аудитория, оснащенная специализированной мебелью, демонстрационным оборудованием (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux:

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Новые генетические технологии и биобезопасность

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.5

Способен участвовать в создании и реализации новых технологий в сфере профессиональной деятельности и контроле их экологической безопасности с использованием живых объектов

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
ОПК.5.1	Участвует в создании и	Неудовлетворител
Участвует в создании и	реализации новых технологий в	Не знает теоретические основы
реализации новых	сфере профессиональной	биотехнологии манипуляции с генами;
технологий в сфере	деятельности	правовую основу биобезопасности;
профессиональной		перспективы применения ДНК-технологий в
деятельности		биологии, медицине, в пищевой и
		фармацевтической промышленности.
		Не умеет работать на основном современном
		оборудовании молекулярно-генетического цикла.
		Не владеет навыками генетического
		мышления.
		Удовлетворительн
		Частично знает теоретические основы
		биотехнологии манипуляции с генами;
		правовую основу биобезопасности;
		перспективы применения ДНК-технологий в
		биологии, медицине, в пищевой и
		фармацевтической промышленности.
		Не умеет работать на основном современном
		оборудовании молекулярно-генетического
		цикла.
		Не владеет навыками генетического
		мышления.
		Хорошо
		Знает теоретические основы биотехнологии
		манипуляции с генами; правовую основу
		биобезопасности; перспективы применения
		ДНК-технологий в биологии, медицине, в
		пищевой и фармацевтической
		промышленности.
		Частично умеет работать на основном
		современном оборудовании молекулярно-
		генетического цикла.
		Владеет навыками генетического мышления.

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		Знает теоретические основы биотехнологии
		манипуляции с генами; правовую основу
		биобезопасности; перспективы применения
		ДНК-технологий в биологии, медицине, в
		пищевой и фармацевтической
		промышленности.
		Умеет работать на основном современном
		оборудовании молекулярно-генетического
		цикла.
		Владеет навыками генетического мышления.

ПК.1 Способен осуществлять научно-исследовательскую деятельность в соответствии с направленностью (профилем) программы магистратуры выполнять эксперименты и оформлять результаты исследований и разработок

Индикатор	Планируемые результаты	Критерии оценивания результатов
_	обучения	обучения
ПК.1.2	Знать современные	Неудовлетворител
применяет	генетические методики. Уметь	Не знает современные генетические
существующие	применять современные	методики. Не умеет применять современные
методики и знания в	генетические технологии в	генетические технологии в локальном
области биологических	локальном исследовании	исследовании
наук в локальном		Удовлетворительн
исследовании		Частично знает современные генетические
		методики. Не умеет применять современные
		генетические технологии в локальном
		исследовании
		Хорошо
		Знает современные генетические методики.
		Частично умеет применять современные
		генетические технологии в локальном
		исследовании
		Отлично
		Знает современные генетические методики.
		Умеет применять современные генетические
		технологии в локальном исследовании

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 50 до 60

«неудовлетворительно» / **«незачтено»** менее 50 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Проведение входного контроля Входное тестирование	Владеть методами теоретической разработки и методами экспериментальных исследований, связанных с проблемами в области генетики; знать практические и теоретические основы молекулярно-генетического анализа.
ПК.1.2 применяет существующие методики и знания в области биологических наук в локальном исследовании ОПК.5.1 Участвует в создании и реализации новых технологий в сфере профессиональной деятельности	Тема 2. Определение нуклеотидной последовательности (секвенирование ДНК). Письменное контрольное мероприятие	Знает принцип проведения полимеразной цепной реакции и модификацию метода - ПЦР в реальном времени. Знать суть метода Сенгера, научно-методические основы секвенирования. Знать как производить подготовку проб и подбор праймеров. Знать суть секвенцовой реакции, гель-электрофореза в генетическом анализаторе, процесса секвенирования, чтения протоколов. Знать значение секвенирования для развития биологии и медицины.

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.1.2 применяет существующие методики и знания в области биологических наук в локальном исследовании ОПК.5.1 Участвует в создании и реализации новых технологий в сфере профессиональной деятельности	Тема 4. Технологии рекомбинантных молекул ДНК. Письменное контрольное мероприятие	Знать научно-методические основы биочипов, типы ДНК-биочипов в зависимости от размера, от материала поверхности, от длины фрагментов ДНК. Знать способы изготовления биочипов: фотолитография in situ, контактная печать, бесконтактная или струйная печать. Знать общую схему биочип-технологии. Знать перспективы и применение ДНК-биочипов в биологии и медицине. Знать способы клонирования ДНК, ферменты для генетической инженерии. Знать как проводится конструирование рекомбинантных ДНК, векторы. Знать методы получения и отбора рекомбинантных ДНК, способы введения рекомбинантных ДНК в клетку, системы экспрессии рекомбинантных генов.

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.1.2	Тема 6. Основы	Знать понятия биологическая
применяет существующие	биобезопасности.	безопасность и биобезопасность, риск
методики и знания в области	Итоговое контрольное	при производстве и использованиии
биологических наук в локальном	мероприятие	ГМО, распространение ГМО в мире и
исследовании		система оценки безопасности ГМО.
ОПК.5.1		Знать понятия
Участвует в создании и		генно-инженерно-модифицированные
реализации новых технологий в		микроорганизмы, контроль
сфере профессиональной		биобезопасности продуктов
деятельности		фармокологической и пищевой
		промышленности.Знать
		законодательную базу биобезопасности
		и биологической безопасности в России:
		Федеральный закон «Об охране
		окружающей среды» от 10.01.2002
		№7-Ф3, ст. 50. «Охрана окружающей
		среды от негативного биологического
		воздействия». Знать Федеральный Закон
		«О государственном регулировании в
		области генно-инженерной
		деятельности» от 05.07.1996 №86-ФЗ,
		постановление «О надзоре за оборотом
		пищевых продуктов, содержащих ГМО»
		от 30.11.2007 №80 (Российская газета
		№4602 от 01.03.2008).

Спецификация мероприятий текущего контроля

Проведение входного контроля

Продолжительность проведения мероприятия промежуточной аттестации: **1 часа** Условия проведения мероприятия: **в часы самостоятельной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **0** Проходной балл: **0**

Показатели оценивания	Баллы
Знает практические и теоретические основы молекулярно-генетического анализа.	5
Владеет методами теоретической разработки и методами экспериментальных	5
исследований, связанных с проблемами в области генетики.	

Тема 2. Определение нуклеотидной последовательности (секвенирование ДНК).

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	Баллы
Знает суть метода Сенгера, научно-методические основы секвенирования. Знать как	15
производить подготовку проб и подбор праймеров. Знает суть секвенцовой реакции,	
гель-электрофореза в генетическом анализаторе, процесса секвенирования, чтения	
протоколов. Знает значение секвенирования для развития биологии и медицины.	
Знает принцип Полимеразной цепной реакции. Знает принцип проведения Полимеразной	15
цепной реакции в реальном времени.	

Тема 4. Технологии рекомбинантных молекул ДНК.

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **30** Проходной балл: **15**

Показатели оценивания	Баллы
Знает методы получения и отбора рекомбинантных ДНК, способы введения	15
рекомбинантных ДНК в клетку, системы экспрессии рекомбинантных генов. Знает способы	
клонирования ДНК, ферменты для генетической инженерии. Знает как проводится	
конструирование рекомбинантных ДНК, векторы.	
Знает научно-методические основы биочипов, типы ДНК-биочипов в зависимости от	15
размера, от материала поверхности, от длины фрагментов ДНК. Знает способы	
изготовления биочипов: фотолитография in situ, контактная печать, бесконтактная или	
струйная печать. Знает общую схему биочип-технологии. Знать перспективы и применение	
ДНК-биочипов в биологии и медицине.	

Тема 6. Основы биобезопасности.

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 20

Показатели оценивания	Баллы
Знает законодательную базу биобезопасности и биологической безопасности в России:	20
Федеральный закон «Об охране окружающей среды» от 10.01.2002 №7-Ф3, ст. 50. «Охрана	
окружающей среды от негативного биологического воздействия».Знает Федеральный	
Закон «О государственном регулировании в области генно-инженерной деятельности» от	
05.07.1996 №86-ФЗ, постановление «О надзоре за оборотом пищевых продуктов,	
содержащих ГМО» от 30.11.2007 №80 (Российская газета №4602 от 01.03.2008).	
Знает понятия биологическая безопасность и биобезопасность, риск при производстве и	20
использованиии ГМО, распространение ГМО в мире и система оценки безопасности ГМО.	
Знает понятия генно-инженерно-модифицированные микроорганизмы, контроль	
биобезопасности продуктов фармокологической и пищевой промышленности.	