МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра ботаники и генетики растений

Авторы-составители: Боронникова Светлана Витальевна

Васильева Юлия Сергеевна

Бельтюкова Надежда Николаевна

Рабочая программа дисциплины

НОВЫЕ ГЕНЕТИЧЕСКИЕ ТЕХНОЛОГИИ И БИОБЕЗОПАСНОСТЬ

Код УМК 67200

Утверждено Протокол №8 от «07» июня 2024 г.

1. Наименование дисциплины

Новые генетические технологии и биобезопасность

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « М.1 » образовательной программы по направлениям подготовки (специальностям):

Направление подготовки: 06.04.01 Биология направленность Биотехнология и генетика

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Новые генетические технологии и биобезопасность** у обучающегося должны быть сформированы следующие компетенции:

06.04.01 Биология (направленность : Биотехнология и генетика)

ОПК.5 Способен участвовать в создании и реализации новых технологий в сфере профессиональной деятельности и контроле их экологической безопасности с использованием живых объектов

Индикаторы

ОПК.5.1 Участвует в создании и реализации новых технологий в сфере профессиональной деятельности

ПК.3 Способен создавать и презентовать проекты

Индикаторы

ПК.3.2 проводит полевые, лабораторные исследования и эксперименты для выполнения проектных работ

4. Объем и содержание дисциплины

Направление подготовки	06.04.01 Биология (направленность: Биотехнология и генетика)		
форма обучения	очная		
№№ триместров,	4		
выделенных для изучения			
дисциплины			
Объем дисциплины (з.е.)	3		
Объем дисциплины (ак.час.)	108		
Контактная работа с	36		
преподавателем (ак.час.),			
в том числе:			
Проведение лекционных	12		
занятий			
Проведение лабораторных	24		
работ, занятий по			
иностранному языку			
Самостоятельная работа	72		
(ак.час.)			
Формы текущего контроля	Защищаемое контрольное мероприятие (1)		
	Письменное контрольное мероприятие (2)		
Формы промежуточной	Зачет (4 триместр)		
аттестации			

5. Аннотированное описание содержания разделов и тем дисциплины

Новые генетические технологии и биобезопасность. Первый семестр

Современные достижения в генетических технологиях. Инновационные генетические технологии. Полимеразная цепная реакция в реальном времени. Технология биочипов. Определение нуклеотидной последовательности (секвенирование) ДНК. Основные технологии генетической инженерии. Методы получения и отбора рекомбинантных ДНК. Способы введения рекомбинантных ДНК в клетку. Экспрессия генов в клетке реципиенте. ГМО – генетически модифицированные организмы: риски при производстве и использовании Биологическая безопасность и биобезопасность. Правовая основа биобезопасности. Контроль биобезопасности продуктов фармакологической промышленности. Контроль генетически-модифицированных источников в продуктах питания.

Раздел 1. Новые генетические технологии

ДНК-технологии в анализе и изучении популяционно-генетического разнообразия. Научно-методические основы ПЦР в реальном времени. Технология биочипов. Определение нуклеотидной последовательности. Перспективы и применение ДНК-технологиий в биологии и медицине.

Тема 1.Полимеразная цепная реакция в реальном времени.

Принцип ПЦР в реальном времени. Отличия ПЦР в реальном времени от ПЦР. Флюорохромы. Детекция сигнала. Кривые плавления. Базовая линия. Подсчет числа цикла амплификации и перевод в количественные показатели. Количественное исследование генетического материала: последовательностей ДНК заданной структуры, генетических полиморфизмов, мутаций в образцах прокариотических и эукариотических организмов, животных, человека. Определение концентрации ампликона в неизвестном образце. Анализ протоколов ПЦР в реальном времени.

Тема 2. Технология биочипов.

Научно-методические основы биочипов. Типы ДНК-биочипов в зависимости от размера, от материала поверхности, от длины фрагментов ДНК. Способы изготовления биочипов: фотолитография in situ, контактная печать, бесконтактная или струйная печать. Общая схема биочип-технологии. Исследование экспрессии генов с использованием микроматриц ДНК. Оборудование системы Microarray: контактная система для печати биочипов «SpotArray 24» (Perkin Elmer, США), конфокальный лазерный сканер для сканирования биочипов «ScanArray Gx.» (Perkin Elmer, США), гибридизационная камера. Программное обеспечение. Перспективы и применение ДНК-биочипов в биологии и медицине.

Тема 3. Определение нуклеотидной последовательности (секвенирование ДНК).

Определение нуклеотидной последовательности. «Химический» метод секвенирования Максама и Гилберта. Метод Сенгера. Секвенирование длинных последовательностей. Научно-методические основы секвенирования. Подготовка проб. Подбор праймеров. Секвенцовая реакция. Гель-электрофорез в генетическом анализаторе. Процесс секвенирования. Чтение протоколов. Секвенирование нового поколения (Next Generation Sequencing). Значение секвенирования для развития биологии и медицины.

Раздел 2. Технологии рекомбинантных молекул ДНК

Клонирование ДНК. Ферменты генетической инженерии. Стратегии генно-инженерных работ. Конструирование рекомбинантных ДНК. Векторные молекулы ДНК. Методы отбора и введения рекомбинантных ДНК. Экспрессия рекомбинантных генов в клетке реципиенте.

Тема 4. Методы получения и отбора рекомбинантных ДНК.

Ферменты для манипуляции с ДНК. Рестрикция. Ферменты рестрикции. Выбор клонирующего вектора (переносчика гена). Основные типы векторов: бактериальные плазмиды, вирусы, космиды, сверхъемкие векторы YAC, BAC и PAC, химерные конструкции и другие. Методы конструирования рекомбинантных

ДНК. Коннекторный метод. Рестриктазно-лигазный метод. Методы Кораны. Бесклеточные белоксинтезирующие системы. Скрининг гибридных клонов. Фенотипическая селекция. Гибридизация нуклеиновых кислот in situ. Функциональная комплементация. Радиоиммуноанализ белков in situ.

Тема 5.Способы введения рекомбинантных ДНК в клетку.

Введение рекомбинантных молекул ДНК в клетку. Микроинъекции ДНК. Электропорация. Трансфекция. Вирусная трансдукция. Бактериальная трансформация. Упаковка в липосомы. Бомбардирование микрочастицами.

Тема 6. Системы экспрессии рекомбинантных генов.

Исследование механизмов экспрессии трансгенов. Эукариотические системы экспрессии рекомбинантных генов, основанные на культурах клеток. Бесклеточные белоксинтезирующие системы: прокариотические системы, эукариотические системы, проточные системы.

Раздел 3. Основы биобезопасности

Биобезопасность и биологическая безопасность. Основные термины и понятия. Правовая основа биобезопасности. Проблемы использования генетически модифицированных организмов. Контроль биобезопасности новых продуктов и производств. Законодательная база биобезопасности и биологической безопасности в России.

Тема 7. Биологическая безопасность и биобезопасность. Риски ГМО.

Биологическая безопасность. Основы биобезопасности. Основные термины. Генная инженерия и биобезопасность. Правовая основа биобезопасности. Основные понятия. Распространение ГМО в мире. Проблемы использования генетически модифицированных организмов. Система оценки безопасности ГМО.

Тема 8. Контроль биобезопасности новых продуктов и производств.

Контроль биобезопасности продуктов фармакологической промышленности. ГМО – генетически модифицированные организмы: риски при производстве и использовании. Контроль генетически-модифицированных источников в продуктах питания. Химические методы анализа продуктов из ГМО. Анализ нового белка.

Тема 9. Международное, европейское и российское законодательство в сфере биобезопасности.

Международное законодательство в сфере биобезопасности. Европейское законодательство в сфере биобезопасности. Правовое регулирование в сфере ГМО в Европейском союзе. Картахенский протокол по биобезопасности к конвенции о биологическом разнообразии. Законодательная база биобезопасности и биологической безопасности в России: Федеральный закон «Об охране окружающей среды» от 10.01.2002 №7-ФЗ, ст. 50. «Охрана окружающей среды от негативного биологического воздействия». Федеральный закон «О государственном регулировании в области генно-инженерной деятельности» от 05.07.1996 №86-ФЗ. Постановление «О надзоре за оборотом пищевых продуктов, содержащих ГМО» от 30.11.2007 №80 (Российская газета №4602 от 01.03.2008).

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Боронникова С. В. Новые генетические технологии и биобезопасность: учебное пособие для студентов, обучающихся по магистерской программе "Генетика" направления подготовки "Биология"/С. В. Боронникова.-Пермь, 2012, ISBN 978-5-7944-2072-2.-143.
- 2. Молекулярная генетика: учебно-методическое пособие/Федеральное агентство по образованию, Пермский государственный университет. Пермь, 2007, ISBN 5-7944-0913-4.-150.- Библиогр.: с. 149

Дополнительная:

- 1. Падутов В. Е., Баранов О. Ю., Воропаев Е. В. Методы молекулярно-генетического анализа: учебно-методическое пособие для студентов медицинских и биологических специальностей вузов/В. Е. Падутов, О. Ю. Баранов, Е. В. Воропаев.-Минск: Юнипол, 2007, ISBN 978-985-6768-12-8.-176.-Библиогр.: с. 138-167
- 2. Глазко В. И.Толковый словарь терминов по общей и молекулярной биологии, общей и прикладной генетике, селекции, ДНК-технологии и биоинформатике.в 2 т. Т. 2.П-Я/В. И. Глазко, Г. В. Глазко ; ред. Н. М. Александрова.-М.:ИКЦ Академкнига,2008, ISBN 978-5-94628-270-3
- 3. Глазко В. И., Глазко Т. Т. ДНК-технологии в генетике и селекции: курс лекций/В. И. Глазко, Т. Т. Глазко.-Краснодар:ВНИИ риса, 2006.-400.
- 4. Глазко В. И.Толковый словарь терминов по общей и молекулярной биологии, общей и прикладной генетике, селекции, ДНК-технологии и биоинформатике.в 2 т. Т. 1.А-О/В. И. Глазко, Г. В. Глазко ; ред. Н. М. Александрова.-М.:ИКЦ Академкнига, 2008, ISBN 978-5-94628-269-7.-671.-Библиогр.: с. 7-8

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

При освоении дисциплины использование ресурсов сети Интернет не предусмотрено.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Новые генетические технологии и биобезопасность** предполагает использование следующего программного обеспечения и информационных справочных систем:

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru). При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться: система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы. система тестирования Indigo (https://indigotech.ru/)

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Новые генетические технологии и биобезопасность

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.5 Способен участвовать в создании и реализации новых технологий в сфере профессиональной деятельности и контроле их экологической безопасности с использованием живых объектов

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
ОПК.5.1	имеет представление о	Неудовлетворител
Участвует в создании и	перспективах и применении	Не освоил технологии рекомбинантных
реализации новых	ДНК-технологиий в биологии и	молекул ДНК, методы получения и отбора
технологий в сфере	медицине, умеет обобщать	рекомбинантных ДНК, способы введения
профессиональной	современные достижения в	рекомбинантных ДНК в клетку и системы
деятельности	области генетических	экспрессии рекомбинантных ген, допускает
	технологий;	Удовлетворительн
		В неполной мере освоил технологии
		рекомбинантных молекул ДНК, методы
		получения и отбора рекомбинантных ДНК,
		способы введения рекомбинантных ДНК в
		клетку и системы экспрессии
		рекомбинантных ген, допускает неточности
		в описание технологий.
		Хорошо
		В полной мере освоил технологии
		рекомбинантных молекул ДНК, методы
		получения и отбора рекомбинантных ДНК,
		способы введения рекомбинантных ДНК в
		клетку и системы экспрессии
		рекомбинантных ген, допускает неточности
		в описание технологий.
		Отлично
		В полной мере освоил технологии
		рекомбинантных молекул ДНК, методы
		получения и отбора рекомбинантных ДНК,
		способы введения рекомбинантных ДНК в
		клетку и системы экспрессии
		рекомбинантных ген

ПК.3

Способен создавать и презентовать проекты

Индикатор	Планируемые результаты	Критерии оценивания результатов	
	обучения	обучения	
ПК.3.2	умеет работать с современным	Неудовлетворител	
проводит полевые,	оборудованием для	Не знает основные термины и понятия	
лабораторные	исследования геномов, знает	биобезопасности, риски ГМО, основы	
исследования и	правовую основу по	проведение контроля по биобезопасности	
эксперименты для	биобезопасности.	новых продуктов и производств,	
выполнения проектных работ		Международное, европейское и российское законодательство в сфере биобезопасности.	
		Удовлетворительн	
		В неполной мере знает основные термины и понятия биобезопасности, риски ГМО, основы проведение контроля по	
		биобезопасности новых продуктов и	
		производств, Международное, европейское	
		российское законодательство в сфере	
		биобезопасности.	
		Хорошо	
		В полной мере знает основные термины и	
		понятия биобезопасности, риски ГМО,	
		основы проведение контроля по	
		биобезопасности новых продуктов и	
		производств, Международное, европейское	
		российское законодательство в сфере	
		биобезопасности, допускает неточности при	
		формулировании законов.	
		Отлично	
		В полной мере знает основные термины и понятия биобезопасности, риски ГМО,	
		основы проведение контроля по	
		биобезопасности новых продуктов и	
		производств, Международное, европейское	
		российское законодательство в сфере	
		биобезопасности.	

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: 2023

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 50 до 60

«неудовлетворительно» / «незачтено» менее 50 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ОПК.5.1 Участвует в создании и реализации новых технологий в сфере профессиональной деятельности	Тема 3. Определение нуклеотидной последовательности (секвенирование ДНК). Письменное контрольное мероприятие	Знание современных генетических технологий
ПК.3.2 проводит полевые, лабораторные исследования и эксперименты для выполнения проектных работ	Тема 6. Системы экспрессии рекомбинантных генов. Письменное контрольное мероприятие	Знание технологий рекомбинантных молекул ДНК
пк.3.2 проводит полевые, лабораторные исследования и эксперименты для выполнения проектных работ ОПК.5.1 Участвует в создании и реализации новых технологий в сфере профессиональной деятельности	Тема 9. Международное, европейское и российское законодательство в сфере биобезопасности. Защищаемое контрольное мероприятие	Знание основ биобезопасности

Спецификация мероприятий текущего контроля

Тема 3. Определение нуклеотидной последовательности (секвенирование ДНК).

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	Баллы
Знает методы секвенирования ДНК	10
Знает технологию биочипов	10
знает основы полимеразной цепной реакции	

Тема 6. Системы экспрессии рекомбинантных генов.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	Баллы
Знает методы получения и отбора рекомбинантных ДНК.	10
Знает способы введения рекомбинантных ДНК в клетку,	
Знает системы экспрессии рекомбинантных генов,	

Тема 9. Международное, европейское и российское законодательство в сфере биобезопасности.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 20

Баллы
10
10
10
10