МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра органической химии

Авторы-составители: Кириллов Николай Федорович

Никифорова Елена Александровна

Рабочая программа дисциплины

ОСНОВНЫЕ ПРИНЦИПЫ ОРГАНИЧЕСКОГО СИНТЕЗА

Код УМК 69309

Утверждено Протокол №2 от «31» августа 2020 г.

1. Наименование дисциплины

Основные принципы органического синтеза

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « М.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 04.04.01 Химия

направленность Органическая химия

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Основные принципы органического синтеза у обучающегося должны быть сформированы следующие компетенции:

04.04.01 Химия (направленность : Органическая химия)

ПК.2 Способен планировать работу и выбирать методы решения поставленных задач в выбранной области химии, химической технологии или смежных с химией науках

Индикаторы

ПК.2.1 Составляет общий план исследований и детальные планы отдельных этапов

4. Объем и содержание дисциплины

Направления подготовки	04.04.01 Химия (направленность: Органическая химия)
форма обучения	очная
№№ триместров,	4
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	4
Объем дисциплины (ак.час.)	144
Контактная работа с	48
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	24
занятий	
Проведение практических	24
занятий, семинаров	
Самостоятельная работа	96
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Защищаемое контрольное мероприятие (2)
	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (1)
Формы промежуточной	Экзамен (4 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Основные принципы органического синтеза. Первый семестр

Введение. Основные тенденции органического синтеза. Стратегия синтеза. Линейный и конвергентный подходы. Каскадные реакции. Органические реакции и синтетические методы. Ретросинтетический анализ. Расчленение, синтоны и их синтетические эквиваленты.

Синтез литийорганических соединений.

Синтез магнийорганических соединений. Условия образования реактива Гриньяра. Реакции с сопровождением. Реактивы Иоцича и Иванова.

Синтез цинкорганических соединений. Методы получения полных цинкорганических соединений.

Условия реакции. Синтезы с помощью металлорганических соединений. Методы получения смешанных цинкорганических соединений.

Синтезы с помощью магний и цинкорганических соединений.

Карбанионы, стабилизированные двумя электроноакцепторными группами.

Карбанионы, сопряженные с одной электроноакцепторной группой.

Карбанионы, стабилизированные соседним атомом фосфора и серы.

Алкены, арены и гетероарены как нуклеофилы. Реакции алкилирования и ацилирования. Реакция Манниха.

Классификация функциональных групп и их взаимных переходах. Изогипсические и неизогипсические реакции. Последовательные и параллельные реакции. Проблема селективности органических реакций. Защита функциональных групп.

Синтетическая эквивалентность функциональных групп. Синтоны и их синтетическая эквивалентность с учетом трансформации функциональных групп. Примеры.

Применение реакций восстановления в органической химии. Восстановление алкенов. Восстановление карбонильных соединений до спиртов и алканов. Восстановление карбоновых кислот и их производных. Восстановление азотсодержащих соединений. Восстановительное расщепление связи углерод-гетероатом и раскрытиецикла в эпоксидах. Восстановление ароматических и гетероароматических соединений.

Применение реакций окисления в органической химии. Основные принципы. Окисление углеводородов. Окислительное присоединение к алкенам. Окисление спиртов.и фенолов. Окисление карбонильных соединений. Окисление азот- и серосодержащих соединений.

Методы образования трехчленного цикла. Внутримолекулярные реакции Вюрца. Циклопропанирование илидами серы. Генерирование и применение карбенов. Реакция Симмонса-Смита.

Циклопропанирование с использованием реактивов Реформатского.

Методы образования четырех членного цикла. Циклизация 1,4-бифункциональных производных.

Термическое [2+2]-циклоприсоединение. Использование кетенов. Фотохимическое [2+2]-циклоприсоединение.

Методы построения циклопентановых систем. Реакции карбанионного типа. Внутримолекулярное внедрение карбенов. Реакции [2+3]-циклоприсоединения. Реакция Назарова.

Циклизации в синтезе циклогексановых систем. Анионная циклизация 1,5-дикарбонильных соединений. Катионные циклизации в синтезе 1,5-полиеновых систем. Реакция Дильса-Альдера.

Радикальные реакции образования углерод-углеродной связи. Гомолитическое присоединение по кратным углерод-углеродным связям. Генерация кетильных радикалов и реакции циклизации на ее основе.

Методы образования трехчленного цикла. Внутримолекулярные реакции Вюрца. Циклопропанирование илидами серы. Генерирование и применение карбенов. Реакция Симмонса-Смита.

Циклопропанирование с использованием реактивов Реформатского.

Методы образования четырех членного цикла. Циклизация 1,4-бифункциональных производных.

Термическое [2+2]-циклоприсоединение. Использование кетенов. Фотохимическое

[2+2]-циклоприсоединение.

Методы построения циклопентановых систем. Реакции карбанионного типа. Внутримолекулярное внедрение карбенов. Реакции [2+3]-циклоприсоединения. Реакция Назарова.

Циклизации в синтезе циклогексановых систем. Анионная циклизация 1,5-дикарбонильных соединений. Катионные циклизации в синтезе 1,5-полиеновых систем. Реакция Дильса-Альдера.

Радикальные реакции образования углерод-углеродной связи. Гомолитическое присоединение по кратным углерод-углеродным связям. Генерация кетильных радикалов и реакции циклизации на ее основе.

Структурно-ориентированный дизайн. Кубан. Додекаэдран. Тетраэдран. Фулерены.

Общие принципы органического синтеза

Введение. Основные тенденции органического синтеза. Стратегия синтеза. Линейный и конвергентный подходы. Каскадные реакции. Органические реакции и синтетические методы. Ретросинтетический анализ. Расчленение, синтоны и их синтетические эквиваленты.

Введение. Основные тенденции органического синтеза

Введение. Основные тенденции органического синтеза. Стратегия синтеза. Линейный и конвергентный подходы. Каскадные реакции. Органические реакции и синтетические методы.

Ретросинтетический анализ.

Ретросинтетический анализ. Расчленение, синтоны и их синтетические эквиваленты.

Образование углерод-углеродной связи реакциями металлорганических соединений

Синтез литийорганических соединений. Реакции замещения галогена на литий. Условия проведения реакции. Влияние характера галогена и строения углеводородного радикала. Побочные реакции. Реакции обмена галогена при взаимодействии галогензамещенных углеводородов с литийорганическими соединениями. Реакции металлирования, вытеснения, переметаллирования. Расщепление связи С-О в простых эфирах. Методы качественного и количественного анализа литийорганических соединений.

Синтез магнийорганических соединений. Условия образования реактива Гри-ньяра. Активирование магния. Влияние растворителя, характера галогена и строения углеводородного радикала. Побочные реакции. Реакции с сопровождением. Реактивы Иоцича и Иванова.

Синтез цинкорганических соединений. Методы получения полных цинкорганических соединений. Условия реакции. Синтезы с помощью металлорганических соединений. Методы получения смешанных цинкорганических соединений.

Химические свойства литий-, магний- и цинкорганических соединений. Реакции с соединениями, содержащими активный водород, с кислородом и серой. Реакции нук-леофильного присоединения. Взаимодействие с оксосоединениями. Условия проведения ре-акции. Аномальные направления реакций. Реакции с оксидом углерода, карбоновыми кислотами и их солями, галогенангидридами и ангидридами кислот, нитрилами, сложными эфирами. Взаимодействие с алкоксипроизводными.

Реакция Реформатского. Получение реактивов Реформатского. Взаимодействие с карбонильными соединениями, хлорангидридами карбоновых кислот. Применение реактивов Реформатского для синтеза гетероциклических соединений — лактонов и лактамов.

Синтезы с помощью магний и цинкорганических соединений.

Литийорганические реагенты. Синтез литийорганических соединений и их реакции.

Синтез литийорганических соединений. Реакции замещения галогена на литий. Условия проведения реакции. Влияние характера галогена и строения углеводородного радикала. Побочные реакции. Реакции обмена галогена при взаимодействии галогензамещенных углеводородов с

литийорганическими соединениями. Реакции металлирования, вытеснения, переметаллирования. Расщепление связи С-О в простых эфирах. Методы качественного и количественного анализа литийорганических соединений.

Реагенты Гриньяра. Получение и их применение в органическом синтезе.

Синтез магнийорганических соединений. Условия образования реактива Гри-ньяра. Активирование магния. Влияние растворителя, характера галогена и строения углеводородного радикала. Побочные реакции. Реакции с сопровождением. Реактивы Иоцича и Иванова.

Металлорганические соединения других классов. Кадмий- и цинкорганические соединения. Реактивы Реформатского. Купратные реагенты. Аллильные производные кремния и бора. Комплексы палладия.

Синтез цинкорганических соединений. Методы получения полных цинкорганических соединений. Условия реакции. Синтезы с помощью металлорганических соединений. Методы получения смешанных цинкорганических соединений.

Реакция Реформатского. Получение реактивов Реформатского. Взаимодействие с карбонильными соединениями, хлорангидридами карбоновых кислот. Применение реактивов Реформатского для синтеза гетероциклических соединений — лактонов и лактамов. Синтезы с помощью магний и цинкорганических соединений.

Образование углерод-углеродной связи с использованием стабилизированных карбанионов

Карбанионы, стабилизированные двумя электроноакцепторными группами. Натриймалоновый эфир, натрийацетоуксусный эфир и реакции алкилирования, ацилирования и конденсации на их основе. Карбанионы, сопряженные с одной электроноакцепторной группой. Способы получения алкилированных альдегидов и кетонов. Проблемы ацилирования карбонильных соединений. Алдольная конденсация.

Карбанионы, стабилизированные соседним атомом фосфора и серы. Реакция Виттига.

Нестабилизированные илиды. Стабилизированные илиды.

Алкены, арены и гетероарены как нуклеофилы. Реакции алкилирования и ацилирования. Реакция Манниха.

Карбанионы, стабилизированные двумя электроноакцепторными группами.

Карбанионы, стабилизированные двумя электроноакцепторными группами. Натриймалоновый эфир, натрийацетоуксусный эфир и реакции алкилирования, ацилирования и конденсации на их основе.

Карбанионы, сопряженные с одной электроноакцепторной группой.

Карбанионы, сопряженные с одной электроноакцепторной группой. Способы получения алкилированных альдегидов и кетонов. Проблемы ацилирования карбонильных соединений. Алдольная конденсация.

Карбанионы, стабилизированные соседним атомом фосфора или серы.

Карбанионы, стабилизированные соседним атомом фосфора и серы. Реакция Виттига. Нестабилизированные илиды. Стабилизированные илиды.

Алкены, арены и гетероарены как нуклеофилы.

Алкены, арены и гетероарены как нуклеофилы. Реакции алкилирования и ацилирования. Реакция Манниха.

Трансформация функциональных групп и синтетическая эквивалентность

Классификация функциональных групп и их взаимных переходах. Изогипсические и неизогипсические

реакции. Последовательные и параллельные реакции. Тема 13. Проблема селективности органических реакций. Защита функциональных групп.

Синтетическая эквивалентность функциональных групп. Синтоны и их синтетическая эквивалентность с учетом трансформации функциональных групп. Примеры.

Применение реакций восстановления в органической химии. Восстановление алкенов. Восстановление карбонильных соединений до спиртов и алканов. Восстановление карбоновых кислот и их производных. Восстановление азотсодержащих соединений. Восстановительное расщепление связи углерод-гетероатом и раскрытиецикла в эпоксидах.Восстановление ароматических и гетероароматических соединений.

Применение реакций окисления в органической химии. Основные принципы. Окисление углеводородов. Окислительное присоединение к алкенам. Окисление спиртов.и фенолов. Окисление карбонильных соединений. Окисление азот- и серосодержащих соединений.

Классификация функциональных групп и их взаимные переходы.

Классификация функциональных групп и их взаимных переходах. Изогипсические и неизогипсические реакции. Последовательные и параллельные реакции.

Проблема селективности органических реакций. Защита функциональных групп.

Проблема селективности органических реакций. Защита функциональных групп.

Синтетическая эквивалентность функциональных групп.

Синтетическая эквивалентность функциональных групп. Синтоны и их синтетическая эквивалентность с учетом трансформации функциональных групп. Примеры.

Применение реакций восстановления в органической химии.

Применение реакций восстановления в органической химии. Восстановление алкенов. Восстановление карбонильных соединений до спиртов и алканов. Восстановление карбоновых кислот и их производных. Восстановление азотсодержащих соединений. Восстановительное расщепление связи углерод-гетероатом и раскрытиецикла в эпоксидах.Восстановление ароматических и гетероароматических соединений.

Применение реакций окисления в органической химии

Применение реакций окисления в органической химии. Основные принципы. Окисление углеводородов. Окислительное присоединение к алкенам. Окисление спиртов.и фенолов. Окисление карбонильных соединений. Окисление азот- и серосодержащих соединений.

Построение циклических структур

Методы образования трехчленного цикла. Внутримолекулярные реакции Вюрца. Циклопропанирование илидами серы. Генерирование и применение карбенов. Реакция Симмонса-Смита.

Циклопропанирование с использованием реактивов Реформатского.

Методы образования четырех членного цикла. Циклизация 1,4-бифункциональных производных.

Термическое [2+2]-циклоприсоединение. Использование кетенов. Фотохимическое [2+2]-циклоприсоединение.

Методы построения циклопентановых систем. Реакции карбанионного типа. Внутримолекулярное внедрение карбенов. Реакции [2+3]-циклоприсоединения. Реакция Назарова.

Циклизации в синтезе циклогексановых систем. Анионная циклизация 1,5-дикарбонильных соединений. Катионные циклизации в синтезе 1,5-полиеновых систем. Реакция Дильса-Альдера.

Радикальные реакции образования углерод-углеродной связи. Гомолитическое присоединение по кратным углерод-углеродным связям. Генерация кетильных радикалов и реакции циклизации на ее

основе.

Методы образования трехчленного цикла.

Методы образования трехчленного цикла. Внутримолекулярные реакции Вюрца. Циклопропанирование илидами серы. Генерирование и применение карбенов. Реакция Симмонса-Смита. Циклопропанирование с использованием реактивов Реформатского.

Методы образования четырехчленного цикла.

Методы образования четырех членного цикла. Циклизация 1,4-бифункциональных производных. Термическое [2+2]-циклоприсоединение. Использование кетенов. Фотохимическое [2+2]-циклоприсоединение.

Методы построения циклопентановых систем

Методы построения циклопентановых систем. Реакции карбанионного типа. Внутримолекулярное внедрение карбенов. Реакции [2+3]-циклоприсоединения. Реакция Назарова.

Циклизации в синтезе циклогексановых систем

Циклизации в синтезе циклогексановых систем. Анионная циклизация 1,5-дикарбонильных соединений. Катионные циклизации в синтезе 1,5-полиеновых систем. Реакция Дильса-Альдера.

Радикальные реакции образования углерод-углеродной связи

Радикальные реакции образования углерод-углеродной связи. Гомолитическое присоединение по кратным углерод-углеродным связям. Генерация кетильных радикалов и реакции циклизации на ее основе.

Молекулярный дизайн

Структурно-ориентированный дизайн. Кубан. Додекаэдран. Тетраэдран. Фулерены.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

1. Современные технологии синтеза органических веществ в формировании естественнонаучной картины мира. Часть 1.Учебное пособие:Уральский федеральный университет, ЭБС ACB,2014.Современные технологии синтеза органических веществ в формировании естественнонаучной картины мира. Часть 1/Иванцова М. Н..-2014.-132, ISBN 978-5-7996-1112-5 http://www.iprbookshop.ru/68296.html

Дополнительная:

- 1. Евстигнеева Р. П. Тонкий органический синтез:учебное пособие для химических, химикотехнологических, биотехнологических специальностей вузов/Р. П. Евстигнеева.-Москва:Химия,1991, ISBN 5-7245-0505-3.-183.
- 2. Кери Ф.Углубленный курс органической химии.перевод с английского : в 2 кн. Кн. 1.Структура и механизмы/Ф. Кери, Р. Сандберг ; пер.: Г. В. Гришина, В. М. Демьянович, В. В. Дунина ; ред. В. М. Потапов.-Москва:Химия,1981.-519.-Библиогр. в конце глав. Предм. указ.: с. 510-519
- 3. Кери Ф.Углубленный курс органической химии.перевод с английского : в 2 кн. Кн. 2.Реакции и синтезы/Ф. Кери, Р. Сандберг ; пер.: Г. В. Гришина, В. М. Демьянович, В. В. Дунина ; ред. В. М. Потапов.-Москва:Химия,1981.-453
- 4. Гарновский, А. Д. Прогресс в молекулярном дизайне моноядерных комплексов оснований Шиффа / А. Д. Гарновский, И. С. Васильченко, Д. А. Гарновский. Ростов-на-Дону: Издательство Южного федерального университета, 2008. 80 с. ISBN 978-5-9275-0467-1. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/47099.html

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

При освоении дисциплины использование ресурсов сети Интернет не предусмотрено.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Основные принципы органического синтеза** предполагает использование следующего программного обеспечения и информационных справочных систем:

- презентационные материалы (слайды по темам лекционных и практических занятий);
- доступ в режиме on-line в Электронную библиотечную систему (ЭБС)
- доступ в электронную информационно-образовательной среду университета.

Основное программное обеспечение, необходимое для поиска информации и подготовки презентаций и зачетных работ - OC Windows, Google Chrome, Internet Explorer, Windows, Microsoft Office, пакет антивирусных программ, редакторы структурных формул (ISIS Draw, ChemOffice), Acrobat Reader, Mercury.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

1. Лекционные занятия

Аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

2. Занятий семинарского типа (семинары, практические занятия)

Аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

3. Самостоятельная работа

Аудитория для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченный доступом в электронную информационнообразовательную среду университета.

Помещения Научной библиотеки ПГНИУ.

4. Групповые (индивидуальные) консультации и текущий контроль

Аудитория, оснащенная меловой (и) или маркерной доской.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Основные принципы органического синтеза

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ПК.2 Способен планировать работу и выбирать методы решения поставленных задач в выбранной области химии, химической технологии или смежных с химией науках

Индикатор	химии, химической технологии или смежных с химией науках Планируемые результаты Критерии оценивания результатов		
индикатор	обучения	обучения	
	•	· ·	
ПК.2.1	Способен планировать синтез	Неудовлетворител	
Составляет общий план	сложных органических	Не способен планировать синтез сложных	
исследований и	соединений, опираясь на	органических соединений, опираясь на	
детальные планы	изученные приемы и методы.	изученные приемы и методы образования	
отдельных этапов		углерод-углеродных связей, построения	
		циклических структур и трансформации	
		функциональных групп. Практически не	
		ориентируется в фактическом материале, не	
		способен подобрать не только оптимальный,	
		но даже принципиально возможный путь	
		синтеза.	
		Удовлетворительн	
		В некоторых случаях способен планировать	
		синтез сложных органических соединений,	
		опираясь на изученные приемы и методы	
		образования углерод-углеродных связей,	
		построения циклических структур и	
		трансформации функциональных групп.	
		Ориентируется в фактическом материале, но	
		практически не способен выбрать	
		оптимальный путь из нескольких вариантов	
		и аргументировать свой выбор.	
		Хорошо	
		Способен планировать синтез сложных	
		органических соединений, опираясь на	
		изученные приемы и методы образования	
		углерод-углеродных связей, построения	
		циклических структур и трансформации	
		функциональных групп. Ориентируется в	
		фактическом материале, не всегда способен	
		выбрать оптимальный путь из нескольких	
		вариантов, аргументировать свой выбор.	
		Отлично	
		Способен планировать синтез сложных	
		органических соединений, опираясь на	
		изученные приемы и методы образования	

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		углерод-углеродных связей, построения
		циклических структур и трансформации
		функциональных групп. Уверенно
		ориентируется в фактическом материале,
		выбирает оптимальный путь из нескольких
		вариантов, аргументирует свой выбор.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: 24/24/96

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 50 до 60

«неудовлетворительно» / «незачтено» менее 50 балла

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
Входной контроль	Введение. Основные	Способы получения органических
	тенденции органического	соединений различных классов.
	синтеза	
	Входное тестирование	
ПК.2.1	Металлорганические	Знание стратегии органического
Составляет общий план	соединения других классов.	синтеза. Умение проведения
исследований и детальные	Кадмий- и	ретросинтетического анализа (синтоны
планы отдельных этапов	цинкорганические	и синтетические эквиваленты). Знание
	соединения. Реактивы	свойств металлорганических
	Реформатского. Купратные	соединений, способов их получения и
	реагенты. Аллильные	использования в органическом синтезе.
	производные кремния и	Умение планировать синтез сложных
	бора. Комплексы палладия.	органических соединений с
	Защищаемое контрольное	использованием металлоорганических
	мероприятие	соединений.
ПК.2.1	Алкены, арены и	Знание методов образования
Составляет общий план	гетероарены как	углерод-углеродной связи при
исследований и детальные	нуклеофилы.	взаимодействии карбанионов,
планы отдельных этапов	Защищаемое контрольное	стабилизированных одной или двумя
	мероприятие	электроноакцепторными группами, с
		электрофильными реагентами. Умение
		планировать синтез сложных
		органических соединений с
		использованием данных методов.

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.2.1	Циклизации в синтезе	Знание методов синтеза циклических
Составляет общий план	циклогексановых систем	соединений, взаимных превращений
исследований и детальные	Письменное контрольное	функциональных групп и их
планы отдельных этапов	мероприятие	синтетической эквивалентности. Умение
		планировать синтез циклических
		органических соединений с
		использованием данных методов,
		планировать синтез сложных
		органических соединений с
		использованием превращений
		функциональных групп, с учетом их
		синтетической эквивалентности.
ПК.2.1	Молекулярный дизайн	Знание методов образования
Составляет общий план	Итоговое контрольное	углерод-углеродной связи,
исследований и детальные	мероприятие	трансформаций функциональных групп,
планы отдельных этапов		методов построения циклических
		структур, использования
		ретросинтетического анализа в
		органическом синтезе. Умение
		планировать синтез сложных
		органических соединений с
		использованием данных методов.

Спецификация мероприятий текущего контроля

Введение. Основные тенденции органического синтеза

Продолжительность проведения мероприятия промежуточной аттестации: **.5 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **0** Проходной балл: **0**

Показатели оценивания	Баллы
Получение карбоновых кислот	2
Получение азотсодержащих соединений	1
Получение ациклических углеводородов	1
Получение простых эфиров	.5
Получение галогенпроизводных	.5

Металлорганические соединения других классов. Кадмий- и цинкорганические соединения. Реактивы Реформатского. Купратные реагенты. Аллильные производные кремния и бора. Комплексы палладия.

Продолжительность проведения мероприятия промежуточной аттестации: **1 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **20** Проходной балл: **10**

Показатели оценивания	
Получение металлорганических соединений и их использование в органическом синтезе	10
Определение синтонов и нахождение их синтетических эквивалентов в зависимости от нуклеофилов и электрофилов	5
Ретросинтетический анализ приведенного органического соединения	5

Алкены, арены и гетероарены как нуклеофилы.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	
Карбанионы, образованные из малонового и ацетоуксусного эфиров и подобных	5
соединений	
Карбанионы, стабилизированные гетероатомами	5
Использование алкенов, аренов и гетероаренов в качестве нуклеофилов	5
Карбанионы, стабилизированные одной электроноакцепторной группой	5

Циклизации в синтезе циклогексановых систем

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	Баллы
Реакции восстановления и окисления в органическом синтезе	5
Шестичленные циклы и методы их образования	5
Системы, содержащие пятичленные циклы и методы их синтеза	5
Образование малых циклов	5

Молекулярный дизайн

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 20

Показатели оценивания	Баллы
Использование металлорганических соединений в органическом синтезе	10
Задача. Синтез циклических органических соединений	10
Задача. Синтез органических соединений с использованием различных карбанионов	10
Использование трансформации функциональных групп в органическом синтезе	

10