МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра органической химии

Авторы-составители: Лунегов Игорь Владимирович

Шкляева Елена Викторовна

Рабочая программа дисциплины

СОПРЯЖЕННЫЕ ПОЛИМЕРЫ ДЛЯ ОРГАНИЧЕСКОЙ ЭЛЕКТРОНИКИ

Код УМК 86014

Утверждено Протокол №7 от «30» июня 2022 г.

1. Наименование дисциплины

Сопряженные полимеры для органической электроники

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « М.1 » образовательной программы по направлениям подготовки (специальностям):

Направление подготовки: 03.04.03 Радиофизика

направленность Радиоэлектроника, телекоммуникации и интеллектуальные системы

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Сопряженные полимеры для органической электроники у обучающегося должны быть сформированы следующие компетенции:

- **03.04.03** Радиофизика (направленность : Радиоэлектроника, телекоммуникации и интеллектуальные системы)
- **ОПК.2** Способен определять сферу внедрения результатов прикладных научных исследований в области своей профессиональной деятельности

Индикаторы

- **ОПК.2.1** Использует физические методы теоретического и экспериментального изучения систем, явлений и процессов в природе и применяет их в профессиональной деятельности
- **ОПК.2.2** Проводит научные исследования, используя современные методы и оборудование, делает анализ данных и представляет их в виде отчета
- **ПК.1** Способен использовать в своей научно-исследовательской деятельности знание современных проблем и новейших достижений физики и радиофизики

Индикаторы

- **ПК.1.1** Самостоятельно ставит научные задачи в области физики и радиофизики и решает их с использованием современного оборудования и новейшего отечественного и зарубежного опыта
 - ПК.1.3 Использует в ходе экспериментов современные методы радиофизических измерений

4. Объем и содержание дисциплины

Направления подготовки	03.04.03 Радиофизика (направленность: Радиоэлектроника,		
	телекоммуникации и интеллектуальные системы)		
форма обучения	очная		
№№ триместров,	4		
выделенных для изучения			
дисциплины			
Объем дисциплины (з.е.)	3		
Объем дисциплины (ак.час.)	108		
Контактная работа с	36		
преподавателем (ак.час.),			
в том числе:			
Проведение лекционных	12		
занятий			
Проведение лабораторных	24		
работ, занятий по			
иностранному языку			
Самостоятельная работа	72		
(ак.час.)			
Формы текущего контроля	Защищаемое контрольное мероприятие (3)		
	Итоговое контрольное мероприятие (1)		
Формы промежуточной	Зачет (4 триместр)		
аттестации			

5. Аннотированное описание содержания разделов и тем дисциплины

Сопряженные полимеры для органической электроники

Электрохимическое окисления органических соединений как метод исследования электроактивности органических соединений

Вольтамперометрия относится к физико-химическим методам анализа и включает в себя группу методов, основанных на получении и расшифровке вольтамперных зависимостей межфазной границы «поляризующийся электрод/раствор электролита». Исследуемые объекты, как правило, содержат в качестве определяемых веществ соединения, имеющие электроактивные свойства. Электролит (раствор, расплав) с погруженными в него электродами находится в электрохимической ячейке. Присутствие электроактивных частиц отражается на регистрируемой вольтамперной кривой в виде характерных ступеней (волн) или пиков в зависимости от способа ее получения. Положение пиков на оси потенциалов часто является показателем, позволяющим идентифицировать определяемые вещества, а высота несет информацию об их концентрации в растворе.

Использование многократных повторяющихся циклов линейной развертки потенциала между заданными значениями начального и конечного потенциала рабочего электрода и регистрацией прямого и обратного хода кривой в одном цикле измерений используется в разновидности этого метода - циклической вольтамперометрии (ЦВА).

Циклическая - вольтамперометрия — это совокупность анодного (окисление) и катодного (восстановление) процессов,

проходящих на электроде. Вид вольтамперограммы зависит от многих факторов: особенности строения двойного

электрического слоя исследуемого вещества, геометрии электрода, параметров ячейки и т.д.

Использование циклической вольтамперометрии позволяет определять такие энергетические характеристики соединений как энергии

фронтальных орбиталей, электрохимическую ширину запрещенной зоны. Позволяет установить электрохимическую устойчивость

исследуемого соединения

Изучение электрохимического окисления органического исследуемого органического соединения методом циклической вольтамперометрии

УФ спектроскопия и ее применение для анализа оптических свойств фото- и электропроводящих сопряженных органических соединений

Электронные спектры поглощения наблюдаются в результате поглощения ультрафиолетового и видимого излучения; при этом происходит переход (возбуждение) валентного электрона с занимаемого им уровня на уровень с более высокой энергией. По типу поглощаемого излучения электронную спектроскопию часто называют спектроскопией в ультрафиолетовой и видимой области, или УФ-спектроскопией.

Спектр поглощения — зависимость показателя поглощения вещества от длины волны (или частоты, волнового числа, энергии кванта и т. п.) излучения. Он связан с энергетическими переходами в веществе. Для различных веществ спектры поглощения различны.

Возможности электронной спектроскопии в распознавании структурных изомеров иногда довольно убедительны.

При выявлении взаимосвязи спектра и структуры молекулы в электронной спектроскопии признается целесообразным наблюдение за изменениями в положении и интенсивности полосы поглощения при переходе от некоторого родоначального хромофора, ответственного за поглощение, к модифицированному путем

введения в систему первого дополнительной хромофорной или ауксохромной группы.

В УФ-области поглощают все органические вещества. Как правило, «рабочая» область составляет интервал 190—730 нм, главным образом от 200 до 380 нм. В этих областях прозрачны оптические материалы для изготовления призм и кювет.

Возможны четыре типа электронных переходов со связывающих и несвязывающих орбиталей основного состояния на разрыхлящие орбитали

возбужденного состояния: сигма-сигма*, пи-сигма*, п -пи* и пи-пи*. Для этих переходов характерны различные значения АЕ (рис. 2).

В целом УФ спектроскопия позволяет уверенно судить о наличии сопряжения в системе, в том числе и ароматического кольца. Этот метод

применяется при количественном определении веществ, поглощающих в УФ части спектра, так как интенсивность поглощения пропорциональна концентрации вещества.

Снятие УФ спектров поглощения исследуемого органического соединения, экспериментальное определение ширины запрещенной зоны

Флуоресцентная спектроскопия, создание пленок на поверхности подложки

Снятие спектров флуоресценции исследуемого органического соединения, определение слвига Стокса

Явление люминесценции широко используется в химии для исследования процессов, связанных с изменениями электронной энергии в различных

процессах. Изменение спектров возбуждения или испускания ниже) несёт в себе важную информацию о химическом составе системы,

кинетике процессов, формах нахождения флуорофора в гомогенных и гетерогенных средах [1, 2]. В основе люминесценции лежит явление

испускания света частицей, находящейся в возбужденном электронном состоянии.

По методу возбуждения люминесценция делится на фото-, электро- и хемилюминесценцию; по времени жизни и мультиплетности возбуждённого и

основного состояний – на флуоресценцию и фосфоресценцию. Флуоресценция – быстро затухающее излучение, связанное с переходом между состояниями без

изменения мультиплетности системы, например, из возбуждённого синглетного в основное синглетное состояние. Фосфоресценция – медленно затухающее

излучение, отвечающее переходу между состояниями с разной мультиплетностью, например, из триплетного в синглетное.

Длина волны испускания и время жизни возбуждённого состояния являются индивидуальными характеристиками флуорофора. При наличии в

системе нескольких компонентов-флуророфоров их индивидуальное определение возможно на основе спектральных u/или временных

характеристик.

При возбуждении флуоресценции в конденсированной фазе наблюдается сдвиг линий спектра испускания в длинноволновую область, называемый сдвигом Стокса. Важной характеристикой флуоресценции является квантовый выход, представляющий собой отношение испущенных и поглощенных фотонов.

Защита полученных результатов (доклады с презентацией)

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Электрохимия органических соединений/А. П. Томилов [и др.]; ред.: В. В. Беренблит, А. Е. Пинчук.-Ленинград:Химия,1968.-592.-Библиогр. в конце глав
- 2. Бёккер, Ю. Спектроскопия : учебник / Ю. Бёккер. Москва : Техносфера, 2009. 528 с. ISBN 978-5-94836-220-5. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/12735
- 3. Спектральные методы анализа:практическое руководство : [учебное пособие по специальности "Фундаментальная и прикладная химия"]/В. И. Васильева, О. Ф. Стоянова, И. В. Шкутина [и др.].-Санкт-Петербург:Лань,2014, ISBN 978-5-8114-1638-7.-416.

Дополнительная:

- 1. Электроаналитические методы. Теория и практика:учебное издание/А. М. Бонд [и др.]; ред. Ф. Шольц; пер. В. Н. Майстренко.-Москва:БИНОМ. Лаборатория знаний,2006, ISBN 5-94774-257-8.-326.-Библиогр.: с. 306-310
- 2. Органическая химия и химия высокомолекулярных соединений:метод. указания по организации самостоятельной работы студентов биологического факультета/Федеральное агентство по образованию, Пермский государственный университет.-Пермь:Перм. гос. ун-т,2007.-28.

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

https://studme.org/224409/tehnika/organicheskie_tranzistory Органические тразисторы Введение в молекулярную электронику: что это такое, разные определения, возникновение, история развития направления, современный Молекулярная электроника (лекции) Пахомов https://teach-in.ru/course/physics-of-organic-semiconductors-parashuk/about Физика органических полупроводников (Паращук Дмитрий Юрьевич)

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Сопряженные полимеры** для органической электроники предполагает использование следующего программного обеспечения и информационных справочных систем:

- презентационные материалы (слайды по темам лекционных и практических занятий);
- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета (ЕТИС ПГНИУ);
- интернет-сервисы и электронные ресурсы (поисковые системы, электронная почта, профессиональные тематические чаты и форумы, системы аудио и видео конференций, онлайн энциклопедии и т.д.). Перечень используемого программного обеспечения:
- открытая система "ALT Linux"
- офисный пакет приложений "Libreoffice";
- приложение позволяющее просматривать и воспроизводить медиа контент PDF-файлов "AdobeAcrobatReader DC";
- программы демонстрации видео материалов (проигрыватель) "WindowsMediaPlaer";
- программа просмотра интернет контента (браузер) "GoogleChrome".

В рамках курса используется программное обеспечение электронного и зондового микроскопов для управления и обработки изображений

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для проведения лекционных занятий:

Аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения лабораторных занятий – Лаборатория, оснащенная специализированным оборудованием. Состав оборудования определен в Паспорте лаборатории.

Аудитории для проведения текущего контроля;

Аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Аудитории для групповых (индивидуальных) консультаций;

Аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Аудитория для самостоятельной работы:

Аудитория оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченная доступом в электронную информационно-образовательную среду университета.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux:

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Сопряженные полимеры для органической электроники

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.2 Способен определять сферу внедрения результатов прикладных научных исследований в области своей профессиональной деятельности

области своей професо Индикатор	Индикатор Планируемые результаты Критерии оценивания результатов		
Т	обучения	обучения	
OHICA 1	•	·	
ОПК.2.1	знать теоретические основы и	Неудовлетворител	
Использует физические	физический смысл спектров	не знает теоретические основы и физический	
методы теоретического	флуоресценции; уметь	смысл спектров флуоресценции; не умеет	
и экспериментального	рассчитывать величину	рассчитывать величину энергии	
изучения систем,	энергии фронтальных	фронтальных орбиталей; не владеет	
явлений и процессов в	орбиталей; владеть навыками	навыками экспериментального изучения	
природе и применяет их	экспериментального изучения	физических свойств органический	
в профессиональной	физических свойств	соединений.	
деятельности	органический соединений.	Удовлетворительн	
		Частично сформированные знания	
		теоретических основ и физического смысла	
		спектров флуоресценции; частично	
		сформированное умение рассчитывать	
		величину энергии фронтальных орбиталей;	
		посредственное владение навыками	
		экспериментального изучения физических	
		свойств органический соединений.	
		Хорошо	
		сформированные, но содержащие пробелы	
		знания теоретических основ и физического	
		смысла спектров флуоресценции;	
		сформированное, но содержащие пробелы	
		умение рассчитывать величину энергии	
		фронтальных орбиталей; неуверенное	
		владение навыками экспериментального	
		изучения физических свойств органический	
		соединений.	
		Отлично	
		сформированные знания теоретических	
		основ и физического смысла спектров	
		флуоресценции; сформированное умение	
		рассчитывать величину энергии	
		фронтальных орбиталей; уверенное владение	
		навыками экспериментального изучения	
		физических свойств органический	
		соединений.	
		соодинении.	

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
ОПК.2.2	Знать современные методы	Неудовлетворител
Проводит научные	исследований физико-	не знает современные методы исследований
исследования,	химических свойств	физико-химических свойств органических
используя современные	органических соединений;	соединений; не умеет определять
методы и оборудование,	уметь определять потенциалы	потенциалы окисления и восстановления и
делает анализ данных и	окисления и восстановления и	проводить анализ данных; не владеет
представляет их в виде	проводить анализ данных;	навыками оформления научных отчетов.
отчета	владеть навыками оформления	Удовлетворительн
	научных отчетов.	частично сформированные знания
		современных методов исследований физико-
		химических свойств органических
		соединений; частично сформированные
		умения определять потенциалы окисления и
		восстановления и проводить анализ данных;
		посредственное владение навыками
		оформления научных отчетов.
		Хорошо
		сформированные, но содержащие пробелы
		знания современных методов исследований
		физико-химических свойств органических
		соединений; сформированные, но
		содержащие пробелы умения определять
		потенциалы окисления и восстановления и
		проводить анализ данных; неуверенное
		владение навыками оформления научных
		отчетов.
		Отлично
		сформированные знания современных
		методов исследований физико-химических
		свойств органических соединений;
		сформированные умения определять
		потенциалы окисления и восстановления и
		проводить анализ данных; уверенное
		владение навыками оформления научных
		отчетов.

ПК.1 Способен использовать в своей научно-исследовательской деятельности знание современных проблем и новейших достижений физики и радиофизики

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
ПК.1.3	знать принцип работы	Неудовлетворител
Использует в ходе	спектрометров и	не знает принцип работы спектрометров и
экспериментов	спектрофлуориметров; уметь	спектрофлуориметров; не умеет снимать
современные методы	снимать спектры вещества в	спектры вещества в различных оптических

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
радиофизических	различных оптических	Неудовлетворител
измерений	диапазонах; владеть навыками	диапазонах; не владеет навыками
	использования	использования исследовательской
	исследовательской аппаратуры	аппаратуры.
		Удовлетворительн
		частично сформированные знания
		принципов работы спектрометров и
		спектрофлуориметров; частично
		сформированные умения снимать спектры
		вещества в различных оптических
		диапазонах; посредственное владение
		навыками использования исследовательской
		аппаратуры.
		Хорошо
		сформированные, но содержащие пробелы
		знания принципов работы спектрометров и
		спектрофлуориметров; сформированные, но
		содержащие пробелы умения снимать
		спектры вещества в различных оптических
		диапазонах; неуверенное владение навыками
		использования исследовательской
		аппаратуры.
		Отлично
		сформированные знания принципов работы
		спектрометров и спектрофлуориметров;
		сформированные умения снимать спектры
		1
		вещества в различных оптических
		диапазонах; уверенное владение навыками
		использования исследовательской
TTIC 1 1		аппаратуры.
ПК.1.1	знать основные принципы	Неудовлетворител
Самостоятельно ставит	проведения научного	не знает основные принципы проведения
научные задачи в	эксперимента; уметь	научного эксперимента; не умеет
области физики и	пользоваться современным	пользоваться современным
радиофизики и решает	высокотехнологичным	высокотехнологичным оборудованием; не
их с использованием	оборудованием; владеть	владеет навыками анализа научных статей.
современного	навыками анализа научных	
оборудования и	статей.	Удовлетворительн
новейшего		частично сформированные знания основных
отечественного и		принципов проведения научного
зарубежного опыта		эксперимента; частично сформированные
		умения пользоваться современным
		высокотехнологичным оборудованием;
		посредственное владение навыками анализа
		научных статей.

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Хорошо
		сформированные, но содержащие пробелы
		знания основных принципов проведения
		научного эксперимента; сформированные, но
		содержащие пробелы умения пользоваться
		современным высокотехнологичным
		оборудованием; неуверенное владение
		навыками анализа научных статей.
		Отлично
		сформированные знания основных
		принципов проведения научного
		эксперимента; сформированные умения
		пользоваться современным
		высокотехнологичным оборудованием;
		уверенное владение навыками анализа
		научных статей.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: 2021

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 48 до 60

«неудовлетворительно» / «незачтено» менее 48 балла

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ОПК.2.2	Изучение	Исследование электрохимического
1,	, ,	Исследование электрохимического поведения органических молекул методом циклической вольтамперометрии умение взвешивать на аналитических и технических весах; - умение написать структурные формулы исследуемого соединения и фонового электролита; - знание структуры электрохимической ячейки; - знание электрохимиечских
		процессов, протекающих в ячейке при пропускании тока;- знание основных положений цикловольтамперометрии;- умение создавать график после проведения эксперимента (работа в Excel); - умение определения потенциалов окисления и восстановления;- знание расчетов для определения величин энергий фронтальных орбиталей (НОМО и LUMO)

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.1.3	Снятие УФ спектров	УФ спектроскопия и ее применение для
Использует в ходе	поглощения исследуемого	анализа оптических свойств фото- и
экспериментов современные	органического соединения,	электропроводящих сопряженных
методы радиофизических	экспериментальное	органических
измерений	определение ширины	соединений
ПК.1.1	запрещенной зоны	- умение написать структурные
Самостоятельно ставит научные	Защищаемое контрольное	формулы исследуемого соединения и
задачи в области физики и	мероприятие	растворителей; -умение провести расчет
радиофизики и решает их с использованием современного		для приготовления растворов заданной
оборудования и новейшего		концентрации; - знание таких понятий
отечественного и зарубежного		как молекулярный вес соединения,
опыта		молярная концентрация; - знание
		основных операций для получения УФ
		спектров поглощения; Снятие спектров
		поглощения органических соединений в
		растворителях разной 4 ч полярности
		(этилацетат, хлороформ,
		диметилформамид)
		- умение обработать данные,
		полученные в результате эксперимента
		(работа в Excel); - умение определить
		длины волн максимумов поглощения и
		начала поглощения; - умение рассчитать
		значение ширины запрещенной зоны; -
		знание основных положений
		спектрального
		анализа

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
,		результатов обучения - уметь написать структурные формулы исследуемого соединения и растворителей; -уметь провести расчет для приготовления растворов заданной концентрации; - знать основные понятия, связанные с проявлением флуоресценции органическими соединениями; - знать основных операций для получения УФ спектров поглощения; - уметь получить спектры флуоресценции, используя данные спектров поглощения-знать такие понятия как сдвиг Стокса, красное смещение и уметь их расчитать-уметь использовать встроенные программы получения спектров флуоресценции спектрофлуорофотометром Shimadzu RF5301pc обработка данных в программе Panorama 3.1 и RFPC - уметь обрабатывать данные, полученные

Компетенция	Мероприятие	Контролируемые элементы	
(индикатор)	текущего контроля	результатов обучения	
ПК.1.1	Защита полученных	1) Создание тонкой пленки из раствора	
Самостоятельно ставит научные	результатов (доклады с	исследуемого соединения методом	
задачи в области физики и	презентацией)	spin-coating с использованием	
радиофизики и решает их с	Итоговое контрольное	центрифуги SPIN-1200D в перчаточном	
использованием современного	мероприятие	боксе с инертной атмосферой2)	
оборудования и новейшего отечественного и зарубежного		Получение данные о морфологии пленки с использованием комбинированного	
опыта		атомно-силового/сканирующего	
ПК.1.3		зондового микроскопа	
Использует в ходе		NT-MDTNtegra-Prima.ACM-зонд	
экспериментов современные методы радиофизических		NSG01/Pt, (полуконтактный метод)3)	
измерений		Получение АСМ/СТМ-изображений и	
ОПК.2.1 Использует физические методы		использованием встроенной программы Nova 1.1.0.1780 4) Создание отчета по	
теоретического и экспериментального изучения систем, явлений и процессов в		выполненному исследованию, включающий описание результатов	
природе и применяет их в		спектроскопических и	
профессиональной деятельности		электрохимических исследований, отчет	
ОПК.2.2		должен включать:- описание и вид	
Проводит научные		спектров поглощения, спектров	
исследования, используя		флуоресценции,	
современные методы и		цикловольтамперометрических кривых,	
оборудование, делает анализ		- таблицы включающие данные -	
данных и представляет их в виде		значения максимумов поглощения,	
отчета		начала поглощения, оптической ширины	
		запрещенной зоны, молярных	
		коэффициент поглощения, максимумов	
		флуоресценции, максимумов	
		возбуждения, сдвигов Стокса; значения	
		потенциалов начала окисления и	
		потенциалов начала восстановления,	
		значения потенциалов окисления и	
		потенциалов восстановления, значения	
		электрохимической ширины	
		запрещенной зоны, значение энергий	
		высшей занятой и низшей свободной	
		молекулярных орбиталей, полученных	
		на основе электрохимических	
		измерений5) Выполнение устного отчета	
		и использованием презентации,	
		включающей материалы отчета.	

Спецификация мероприятий текущего контроля

Изучение электрохимического окисления органического исследуемого органического соединения методом циклической вольтамперометрии

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 9

Показатели оценивания	Баллы
- уметь взвешивать на аналитических и технических весах;- уметь написать структурные	20
формулы исследуемого соединения и фонового электролита;- знать структуру	l
электрохимической ячейки;- знать и понимать электрохимических процессов,	<u> </u>
протекающих в ячейке при пропускании тока;- знать основные положения метода	İ
цикловольтамперометрии;- уметь определять потенциалы окисления и восстановления;-	l
знать расчеты для определения величин энергий фронтальных орбиталей (HOMO и LUMO)	
- уметь взвешивать на аналитических и технических весах;- уметь написать структурные	15
формулы исследуемого соединения и фонового электролита;- знать структуру	l
электрохимической ячейки;- знать и понимать электрохимических процессов,	l
протекающих в ячейке при пропускании тока;- знать основные положения метода	l
цикловольтамперометрии;- уметь создавать график после проведения эксперимента (работа	l
в Excel);	
- уметь взвешивать на аналитических и технических весах;- уметь написать структурные	12
формулы исследуемого соединения и фонового электролита;- знать структуру	l
электрохимической ячейки;- знать и понимать электрохимических процессов,	l
протекающих в ячейке при пропускании тока;- знать основные положения метода	İ
цикловольтамперометрии;	
- уметь взвешивать на аналитических и технических весах;- уметь написать структурные	10
формулы исследуемого соединения и фонового электролита;- знать структуру	İ
электрохимической ячейки;	l .

Снятие УФ спектров поглощения исследуемого органического соединения, экспериментальное определение ширины запрещенной зоны

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	
-уметь выполнить расчет для приготовления растворов заданной концентрации с помощью встроенной программы; -знать такие понятия как атомный вес элемента, молекулярный	20
вес соединения, молярная концентрация и уметь пользоваться ими- знать основные	

операции, необходимые для получения УФ спектров поглощения; - уметь получить	
спектры поглощения органических соединений в растворителях разной полярности (этилацетат, хлороформ, диметилформамид) - уметь обрабатывать данные, полученные в	
результате эксперимента (работа в Excel); - знать понятие "молярный коэффициент	
поглощения" и уметь его находить с помощью полученных экспериментальных данных и встроенной программы расчета- уметь определить длины волн максимумов поглощения и начала поглощения; - уметь рассчитать значение ширины запрещенной зоны; - знать	
основные положения спектрального анализа	
-уметь выполнить расчет для приготовления растворов заданной концентрации с помощью встроенной программы; -знать такие понятия как атомный вес элемента, молекулярный вес соединения, молярная концентрация и уметь пользоваться ими	15
знать основные операции, необходимые для получения УФ спектров поглощения; - уметь	
получить спектры поглощения органических соединений в растворителях разной полярности (этилацетат, хлороформ, диметилформамид) уметь обработать данные,	
полученные в результате эксперимента (работа в Excel); знать понятие "молярный	
коэффициент поглощения" и уметь его находить с помощью полученных экспериментальных данных и встроенной программы	
уметь выполнить расчет для приготовления растворов заданной концентрации с помощью встроенной программы; -знать такие понятия как атомный вес элемента, молекулярный	10
вес соединения, молярная концентрация и уметь пользоваться ими знать основные операции, необходимые для получения УФ спектров поглощения; - уметь	
получить спектры поглощения органических соединений в растворителях разной полярности (этилацетат, хлороформ, диметилформамид) умение обработать данные,	
полученные в результате эксперимента (работа в Excel)	
уметь выполнить расчет для приготовления растворов заданной концентрации с помощью встроенной программы; - знать такие понятия как атомный вес элемента, молекулярный	5
вес соединения, молярная	

Снятие спектров флуоресценции исследуемого органического соединения, определение сдвига Стокса

Продолжительность проведения мероприятия промежуточной аттестации: **1 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **20** Проходной балл: **9**

Показатели оценивания	Баллы
- уметь написать структурные формулы исследуемого соединения и растворителей; -уметь	20
провести расчет для приготовления растворов заданной концентрации; - знать основные	
понятия, связанные с проявлением флуоресценции органическими соединениями; - знать	
основные операции, необходимые для получения УФ спектров поглощения; - уметь	
получить спектры флуоресценции, используя данные спектров поглощения-знать такие	
понятия как сдвиг Стокса, красное смещение и уметь их расчитать-уметь использовать	
встроенные программы получения спектров флуоресценции спектрофлуорофотометром Shimadzu RF5301pc обработка данных в программе Panorama 3.1 и RFPC - уметь	
обрабатывать данные, полученные в результате эксперимента (работа в Excel); - уметь	
выполнять наложение спектров поглощения и спектров флуоресценции -	
- уметь написать структурные формулы исследуемого соединения и растворителей; -уметь	15
провести расчет для приготовления растворов заданной концентрации; - знать основные	
понятия, связанные с проявлением флуоресценции органическими соединениями; - знать	
основные операции, необходимые для получения УФ спектров поглощения; - уметь	
получить спектры флуоресценции, используя данные спектров поглощения	
- уметь написать структурные формулы исследуемого соединения и растворителей; -уметь	10
провести расчет для приготовления растворов заданной концентрации; - знать основные	
понятия, связанные с проявлением флуоресценции органическими соединениями;	
- уметь написать структурные формулы исследуемого соединения и растворителей; -уметь	5
провести расчет для приготовления растворов заданной концентрации;	

Защита полученных результатов (доклады с презентацией)

Продолжительность проведения мероприятия промежуточной аттестации: **3 часа** Условия проведения мероприятия: **в часы самостоятельной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **40** Проходной балл: **20**

Показатели оценивания	Баллы
Выполнены все требования, предъявляемы для создания отчета и его представления	40
Представлены отчет и презентация, но включены не все данные	30
Представлен отчет, но включены не все данные	25
Не представлены отчет и презентация для отчета	5