МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра фундаментальной математики

Авторы-составители: Скачкова Елена Александровна

Шеремет Галина Геннадьевна

Рабочая программа дисциплины

КОМПЬЮТЕРНАЯ ГЕОМЕТРИЯ

Код УМК 92159

Утверждено Протокол №9 от «22» мая 2020 г.

1. Наименование дисциплины

Компьютерная геометрия

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в базовую часть Блока « М.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 02.04.01 Математика и компьютерные науки

направленность Математическое моделирование

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Компьютерная геометрия у обучающегося должны быть сформированы следующие компетенции:

02.04.01 Математика и компьютерные науки (направленность : Математическое моделирование)

ОПК.1 Способен находить, формулировать и решать актуальные и значимые проблемы прикладной и компьютерной математики

Индикаторы

ОПК.1.2 Выявляет и формулирует актуальные проблемы; обосновывает актуальность, теоретическую и практическую значимость

4. Объем и содержание дисциплины

Направления подготовки	02.04.01 Математика и компьютерные науки (направленность:
	Математическое моделирование)
форма обучения	очная
№№ триместров,	4
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	4
Объем дисциплины (ак.час.)	144
Контактная работа с	48
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	24
занятий	
Проведение практических	24
занятий, семинаров	
Самостоятельная работа	96
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (2)
Формы промежуточной	Экзамен (4 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Компьютерная геометрия

В результате изучения курса студент должен

- 1. Знать определение и свойства центрального и параллельного проектирования;
- 2. Знать причины, приводящие к расширению евклидовой плоскости путем добавления несобственных точек и прямых;
- 3. Уметь строить образы геометрических фигур пр центральном и параллельном проектировании, в том числе и с помощью компьютерных программ;
- 4. Владеть навыками геометрического моделирования в некоторых системах компьютерной математики;
- 5. Уметь применять построенные геометрические и компьютерные модели при решении практических задач;
- 6. Знать аксиоматику и модели проективной плоскости;
- 7. Знать формулировку основных теорем проективной геометрии;
- 8. Уметь применять теоремы проективной геометрии при решении задач.

Входной контроль

Входной контроль проводится в виде теста. Его целью является проверка знаний, связанных со свойствами прямых и плоскостей в евклидовой геометрии.

Центральное и параллельное проектирование

Определение центрального проектирования. Свойства центрального проектирования. Образы прямой, отрезка, треугольника при центральном проектировании. Построение образов фигур при центральном проектировании в программе geogebra.

Определение параллельного проектирования. Свойства параллельного проектирования. Образы прямой, отрезка, треугольника при параллельном проектировании. Построение образов фигур при параллельном проектировании в программе geogebra.

Контрольное мероприятие 1

Проводится в форме защищаемого контрольного мероприятия.

Проверяемые элементы:

Знать определение и свойства центрального и параллельного проектирования;

Знать причины, приводящие к расширению евклидовой плоскости путем добавления несобственных точек и прямых;

Уметь строить образы геометрических фигур пр центральном и параллельном проектировании, в том числе и с помощью компьютерных программ;

Владеть навыками геометрического моделирования в некоторых системах компьютерной математики.

Расширенная евклидова плоскость. Проективная плоскость.

Определение и свойства расширенной евклидовой плоскости. Сложное отношение четырех точек прямой и его свойства. Аксиоматическое построение проективной плоскости. Модели проективной плоскости.

Контрольное мероприятие 2

Проверяемые элементы:

Знать: причины, приводящие к расширению евклидовой плоскости путем добавления несобственных точек и прямых; аксиоматику и модели проективной плоскости.

Уметь: вычислять сложное отношение четырех точек, применять при решении задач.

Владеть навыками геометрического моделирования в некоторых системах компьютерной математики.

Основные теоремы проективной геометрии

Теорема Дезарга. Полный четырехвершинник и его свойства. Теорема Паскаля. Теорема Паппа.

Итоговое контрольное мероприятие

Контролируемые элементы:

Знать: определение и свойства центрального и параллельного проектирования; причины, приводящие к расширению евклидовой плоскости путем добавления несобственных точек и прямых; аксиоматику и модели проективной плоскости; формулировку основных теорем проективной геометрии. Уметь: строить образы геометрических фигур пр центральном и параллельном проектировании, в том числе и с помощью компьютерных программ; применять построенные геометрические и компьютерные модели при решении практических задач; применять теоремы проективной геометрии при решении задач. Владеть навыками геометрического моделирования в некоторых системах компьютерной математики.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Андреева, З. И. Многообразие геометрии : учебник / З. И. Андреева, Г. Г. Шеремет. Пермь : Пермский государственный гуманитарно-педагогический университет, 2015. 172 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/70642.html
- 2. Вечтомов, Е. М. Компьютерная геометрия: геометрические основы компьютерной графики: учебное пособие для вузов / Е. М. Вечтомов, Е. Н. Лубягина. 2-е изд. Москва: Издательство Юрайт, 2020. 157 с. (Высшее образование). ISBN 978-5-534-09268-4. Текст: электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/427523
- 3. Компьютерная геометрия : практикум / А. О. Иванов, Д. П. Ильютко, Г. В. Носовский [и др.]. 4-е изд. Москва : Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2022. 489 с. ISBN 978-5-4497-1642-2. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. https://www.iprbookshop.ru/120478

Дополнительная:

- 1. Атанасян, С. Л. Проективная геометрия : учебное пособие для студентов физико-математических факультетов педагогических вузов / С. Л. Атанасян. Москва : Московский городской педагогический университет, 2010. 224 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/26572
- 2. Компьютерная геометрия : практикум / А. О. Иванов, Д. П. Ильютко, Г. В. Носовский [и др.]. 4-е изд. Москва : Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2022. 489 с. ISBN 978-5-4497-1642-2. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. https://www.iprbookshop.ru/120478

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://www.psu.ru/elektronnye-resursy-dlya-psu Электронные ресурсы для ПГНИУ http://window.edu.ru/ Единое окно доступа к образовательным ресурсам http://www.mathnet.ru/ Общероссийский математический портал

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Компьютерная геометрия** предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета.

Необходимое лицензионное и (или) свободно распространяемое программное обеспечение:

- приложение, позволяющее просматривать и воспроизводить медиаконтент PDF-файлов «Adobe Acrobat Reader DC»:
- офисный пакет приложений «LibreOffice»; пакеты программ "GeoGebra" и "Живая геометрия".

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий - компьютерный класс. Состав оборудования определен в Паспорте компьютерного класса.

Для групповых (индивидуальных) консультаций - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской. Самостоятельная работа студентов: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-образовательную среду университета, помещения Научной библиотеки ПГНИУ

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
 - 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными

компьютерами с доступом к локальной и глобальной компьютерным сетям.

- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Компьютерная геометрия

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.1 Способен находить, формулировать и решать актуальные и значимые проблемы прикладной и компьютерной математики

Индикатор Планируемые результаты Критерии оценивания результат		
	обучения	обучения
ОПК.1.2	Знать: определение и свойства	Неудовлетворител
Выявляет и	центрального и параллельного	Не знает: определение и свойства
формулирует	проектирования; причины,	центрального и параллельного
актуальные проблемы;	приводящие к расширению	проектирования; причины, приводящие к
обосновывает	евклидовой плоскости путем	расширению евклидовой плоскости путем
актуальность,	добавления несобственных	добавления несобственных точек и прямых
георетическую и	точек и прямых; аксиоматику и	аксиоматику и модели проективной
практическую	модели проективной плоскости;	плоскости; формулировку основных теорем
вначимость	формулировку основных теорем	проективной геометрии.
	проективной геометрии.	Не умеет: строить образы геометрических
	Уметь: строить образы	фигур пр центральном и параллельном
	геометрических фигур пр	проектировании, в том числе и с помощью
	центральном и параллельном	компьютерных программ; применять
	проектировании, в том числе и	построенные геометрические и
	с помощью компьютерных	компьютерные модели при решении
	программ; применять	практических задач; применять теоремы
	построенные геометрические и	проективной геометрии при решении задач
	компьютерные модели при	Не владеет навыками геометрического
	решении практических задач;	моделирования в некоторых системах
	применять теоремы	компьютерной математики.
	проективной геометрии при	Удовлетворительн
	решении задач.	Частично знает: определение и свойства
	Владеть навыками	центрального и параллельного
	геометрического	проектирования; причины, приводящие к
	моделирования в некоторых	расширению евклидовой плоскости путем
	системах компьютерной	добавления несобственных точек и прямых
	математики.	аксиоматику и модели проективной
		плоскости; формулировку основных теорем
		проективной геометрии.
		Не уметь: строить образы геометрических
		фигур пр центральном и параллельном
		проектировании, в том числе и с помощью
		компьютерных программ; применять
		построенные геометрические и
		компьютерные модели при решении
		практических задач; применять теоремы

	V
	Удовлетворительн проективной геометрии при решении задач. Не владеет навыками геометрического моделирования в некоторых системах компьютерной математики. Хорошо Знает определение и свойства центрального и параллельного проектирования; причины, приводящие к расширению евклидовой плоскости путем добавления несобственных точек и прямых; аксиоматику и модели проективной плоскости; формулировку
	основных теорем проективной геометрии. Частично умеет: строить образы геометрических фигур пр центральном и параллельном проектировании, в том числе и с помощью компьютерных программ; применять построенные геометрические и компьютерные модели при решении практических задач; применять теоремы проективной геометрии при решении задач. Владеть навыками геометрического моделирования в некоторых системах
	компьютерной математики. Отлично Знать: определение и свойства центрального и параллельного проектирования; причины, приводящие к расширению евклидовой плоскости путем добавления несобственных точек и прямых; аксиоматику и модели проективной плоскости; формулировку основных теорем проективной геометрии. Уметь: строить образы геометрических фигур пр центральном и параллельном проектировании, в том числе и с помощью компьютерных программ; применять построенные геометрические и компьютерные модели при решении практических задач; применять теоремы проективной геометрии при решении задач. Владеть навыками геометрического

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
Входной контроль	Входной контроль	Свойства прямых и плоскостей в
	Входное тестирование	евклидовой геометрии.
ОПК.1.2	Контрольное мероприятие	Знать определение и свойства
Выявляет и формулирует	1	центрального и параллельного
актуальные проблемы;	Письменное контрольное	проектирования;Знать причины,
обосновывает актуальность,	мероприятие	приводящие к расширению евклидовой
теоретическую и практическую		плоскости путем добавления
значимость		несобственных точек и прямых;Уметь
		строить образы геометрических фигур
		пр центральном и параллельном
		проектировании, в том числе и с
		помощью компьютерных программ;
		Владеть навыками геометрического
		моделирования в некоторых системах
		компьютерной математики.
ОПК.1.2	Контрольное мероприятие	Знать: причины, приводящие к
Выявляет и формулирует	2	расширению евклидовой плоскости
актуальные проблемы;	Письменное контрольное	путем добавления несобственных точек
обосновывает актуальность,	мероприятие	и прямых; аксиоматику и модели
теоретическую и практическую		проективной плоскости. Уметь:
значимость		вычислять сложное отношение четырех
		точек, применять при решении задач.
		Владеть навыками геометрического
		моделирования в некоторых системах
		компьютерной математики.

Компетенция	Мероприятие	Контролируемые элементы	
(индикатор)	текущего контроля	результатов обучения	
ОПК.1.2	Итоговое контрольное	Знать: определение и свойства	
Выявляет и формулирует	мероприятие	центрального и параллельного	
актуальные проблемы;	Итоговое контрольное	проектирования; причины, приводящие	
обосновывает актуальность,	мероприятие	к расширению евклидовой плоскости	
теоретическую и практическую		путем добавления несобственных точек	
значимость		и прямых; аксиоматику и модели	
		проективной плоскости; формулировку	
		основных теорем проективной	
		геометрии. Уметь: строить образы	
		геометрических фигур пр центральном и	
		параллельном проектировании, в том	
		числе и с помощью компьютерных	
		программ; применять построенные	
		геометрические и компьютерные модели	
		при решении практических задач;	
		применять теоремы проективной	
		геометрии при решении задач. Владеть	
		навыками геометрического	
		моделирования в некоторых системах	
		компьютерной математики.	

Спецификация мероприятий текущего контроля

Входной контроль

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 0

Проходной балл: 0

Показатели оценивания	Баллы
Уравнения прямых в евклидовой плоскости	25
Взаимное расположение прямых, прямой и плоскости	25
Уравнения прямых в евклидовом пространстве	25
Уравнения плоскостей в евклидовом пространстве	25

Контрольное мероприятие 1

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Уметь строить образы геометрических фигур пр центральном и параллельном	10

проектировании, в том числе и с помощью компьютерных программ;	
Знать определение и свойства центрального и параллельного проектирования;	10
Владеть навыками геометрического моделирования в некоторых системах компьютерной	5
математики.	
Знать причины, приводящие к расширению евклидовой плоскости путем добавления	5
несобственных точек и прямых;	

Контрольное мероприятие 2

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Знание причин, приводящие к расширению евклидовой плоскости путем добавления	10
несобственных точек и прямых; аксиоматики и моделей проективной плоскости.	
Владение навыками геометрического моделирования в некоторых системах компьютерной	10
математики.	
Умение вычислять сложное отношение четырех точек, применять при решении задач.	10

Итоговое контрольное мероприятие

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Знать: определение и свойства центрального и параллельного проектирования; причины,	10
приводящие к расширению евклидовой плоскости путем добавления несобственных точек	
и прямых; аксиоматику и модели проективной плоскости; формулировку основных теорем	
проективной геометрии.	
Владеть навыками геометрического моделирования в некоторых системах компьютерной	10
математики.	
Уметь: применять теоремы проективной геометрии при решении задач.	10
Уметь: строить образы геометрических фигур пр центральном и параллельном	10
проектировании, в том числе и с помощью компьютерных программ;	