МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра фундаментальной математики

Авторы-составители: Скачкова Елена Александровна

Павелкин Владимир Николаевич

Рабочая программа дисциплины

АЛГЕБРАИЧЕСКИЕ И ГЕОМЕТРИЧЕСКИЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Код УМК 80939

Утверждено Протокол №9 от «22» мая 2020 г.

1. Наименование дисциплины

Алгебраические и геометрические методы математической физики

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « М.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 02.04.01 Математика и компьютерные науки

направленность Математическое моделирование

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Алгебраические и геометрические методы математической физики у обучающегося должны быть сформированы следующие компетенции:

02.04.01 Математика и компьютерные науки (направленность : Математическое моделирование)

ОПК.1 Способен находить, формулировать и решать актуальные и значимые проблемы прикладной и компьютерной математики

Индикаторы

ОПК.1.1 Осуществляет сбор и анализ информации по решаемой проблеме

ОПК.2 Способен создавать и исследовать новые математические модели в естественных науках, совершенствовать и разрабатывать концепции, теории и методы

Индикаторы

ОПК.2.1 Составляет математическое описание решаемой проблемы

ОПК.2.2 Создает новые математические модели

4. Объем и содержание дисциплины

Направления подготовки	02.04.01 Математика и компьютерные науки (направленность:		
_	Математическое моделирование)		
форма обучения	очная		
№№ триместров,	1		
выделенных для изучения			
дисциплины			
Объем дисциплины (з.е.)	3		
Объем дисциплины (ак.час.)	108		
Контактная работа с	36		
преподавателем (ак.час.),			
в том числе:			
Проведение лекционных	12		
занятий			
Проведение практических	24		
занятий, семинаров			
Проведение лабораторных	0		
работ, занятий по			
иностранному языку			
Самостоятельная работа	72		
(ак.час.)			
Формы текущего контроля	Входное тестирование (1)		
	Итоговое контрольное мероприятие (1)		
	Письменное контрольное мероприятие (2)		
Формы промежуточной	Зачет (1 триместр)		
аттестации			

5. Аннотированное описание содержания разделов и тем дисциплины

Входной контроль

К началу изучения курса "Алгебраические и геометрические методы математической физики" студент должен знать содержание дисциплин: алгебра, аналитическая и дифференциальная геометрия, математический анализ, теорию дифференциальных уравнений и уравнения в частных производных, тензорный анализ.

Многообразия и группы симметрий

Определение многообразия. касательное и кокасательные пространства, векторное поле, координатный базис, тензорные поля, аффинная связность, ковариантная производная, тензор кривизны. Группы Ли, пространственные группы, группы внутренних симметрий.

KT №1

Коллоквиум по пройденным темам.

Современные математические модели теории гравитации

Принципы общей теории относительности, уравнения Эйнштейна, астрофизические и космологические решения уравнений Эйнштейна.

KT №2

Индивидуальная работа по составлению и решению уравнений Эйнштейна.

Теория калибровочных полей

Калибровочные поля, теория Янга-Миллса, спонтанное нарушение симметрии и механизм Хиггса, модель Вайнберга-Салама.

икм

Экзамен по тематике разделов "Современные математические модели теории гравитации" и "Теория калибровочных полей".

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Высшая математика. Том 4. Дифференциальные уравнения. Ряды. Ряды Фурье и преобразование Фурье. Дифференциальное и интегральное исчисление функций нескольких переменных. Теория поля: учебник / А. П. Господариков, М. А. Зацепин, Г. А. Колтон [и др.]; под редакцией А. П. Господариков. Санкт-Петербург: Национальный минерально-сырьевой университет «Горный», 2015. 213 с. ISBN 978-5-94211-713-9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/71690.html
- 2. Лобов Н. И., Любимов Д. В. Общая теория относительности: учебно-методическое пособие/Н. И. Лобов, Д. В. Любимов.-Пермь, 2007, ISBN 5-7944-0816-2.-127.-Библиогр.: с. 126
- 3. Горбунов Д. С., Рубаков В. А. Введение в теорию ранней Вселенной. Теория горячего Большого взрыва/Д. С. Горбунов, В. А. Рубаков.-Москва: URSS, 2008, ISBN 978-5-382-00657-4.-544.-Библиогр.: с. 537-539. Предм. указ.: с. 540-543

Дополнительная:

- 1. Роуэн-Робинсон М. Космология/М. Роуэн-Робинсон ; пер. Н. А. Зубченко ; ред. П. К. Силаева.-Москва:Регулярная и хаотическая динамика,2008, ISBN 978-5-93972-659-7.-256.-Библиогр.: с. 221-222. -Предм. указ.: с. 232-237. - Имен. указ.: с. 238
- 2. Рубаков Валерий Анатольевич Классические калибровочные поля/Валерий Анатольевич Рубаков.-М.:Эдиториал УРСС,1999, ISBN 5-8360-0003-4.-336.
- 3. Уолд Р. М. Общая теория относительности/Р. М. Уолд ; пер. с англ. В. Р. Гаврилова [и др.]; под ред. И. Л. Бухбиндера, С. В. Червона.-Москва:Издательство Российского университета дружбы народов, 2008, ISBN 978-5-209-02964-9.-693.-Библиогр.: с. 665-681. Предм. указ.: с. 682-686
- 4. Понтрягин Л. С. Непрерывные группы/Л. С. Понтрягин.-Москва:Едиториал УРСС,2004, ISBN 5-354-00957-X.-520.

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://www.psu.ru/elektronnye-resursy-dlya-psu Электронные ресурсы для ПГНИУ http://window.edu.ru/ Единое окно доступа к образовательным ресурсам http://www.mathnet.ru/ Общероссийский математический портал

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Алгебраические и геометрические методы математической физики** предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета.

Необходимое лицензионное и (или) свободно распространяемое программное обеспечение:

- приложение позволяющее просматривать и воспроизводить медиаконтент PDF-файлов «Adobe Acrobat Reader DC»;
- офисный пакет приложений «LibreOffice».

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для групповых (индивидуальных) консультаций - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской. Самостоятельная работа студентов - аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-образовательную среду университета, помещения Научной библиотеки ПГНИУ.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
 - 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными

компьютерами с доступом к локальной и глобальной компьютерным сетям.

- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Алгебраические и геометрические методы математической физики

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.1 Способен находить, формулировать и решать актуальные и значимые проблемы прикладной и компьютерной математики

Индикатор	Планируемые результаты	Критерии оценивания результатов
	обучения	обучения
ОПК.1.1	Знает основные определения и	Неудовлетворител
Осуществляет сбор и	утверждения теории	Не знает основные определения и
анализ информации по	калибровочных полей. Умеет	утверждения теории калибровочных полей.
решаемой проблеме	найти информацию в	Не умеет найти информацию в литературе
	литературе или сети интернет	или сети интернет по поводу существующих
	по поводу существующих	калибровочных теорий единых физических
	калибровочных теорий единых	полей.
	физических полей.	Удовлетворительн
		Частично знает основные определения и
		утверждения теории калибровочных полей.
		Не умеет найти информацию в литературе
		или сети интернет по поводу существующих
		калибровочных теорий единых физических
		полей.
		Хорошо
		Частично знает основные определения и
		утверждения теории калибровочных полей.
		Умеет найти информацию в литературе или
		сети интернет по поводу существующих
		калибровочных теорий единых физических
		полей.
		Отлично
		Знает основные определения и утверждения
		теории калибровочных полей. Умеет найти
		информацию в литературе или сети интернет
		по поводу существующих калибровочных
опи з		теорий единых физических полей.

ОПК.2 Способен создавать и исследовать новые математические модели в естественных науках, совершенствовать и разрабатывать концепции, теории и методы

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
ОПК.2.1	Знать: Основные определения	Неудовлетворител
Составляет	понятий теории	Не знает основные определения понятий
математическое	дифференцируемых	теории дифференцируемых многообразий и

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
описание решаемой проблемы	многообразий и теории групп Ли, основные теоремы и утверждения этих теорий. Уметь: привести примеры применения теории дифференцируемых многообразий и групп Ли в физике.	Неудовлетворител теории групп Ли, основные теоремы и утверждения этих теорий. Не может привести примеры применения теории дифференцируемых многообразий и групп Ли в физике. Удовлетворительн Частично знает основные определения понятий теории дифференцируемых многообразий и теории групп Ли, основные теоремы и утверждения этих теорий. Не может привести примеры применения теории дифференцируемых многообразий и групп Ли в физике. Хорошо Частично знает основные определения понятий теории дифференцируемых многообразий и теории групп Ли, основные теоремы и утверждения этих теорий. Может привести 2 примера применения теории дифференцируемых многообразий и групп Ли в физике. Отлично Знает основные определения понятий теории дифференцируемых многообразий и теории групп Ли, основные теоремы и утверждения этих теорий. Может привести примеры
OHMAAA		применения теории дифференцируемых многообразий и групп Ли в физике.
ОПК.2.2 Создает новые математические модели	Знает: определения основных понятий и основные утверждения теории гравитации, известные решения уравнений Эйнштейна. Умеет: воспризводить известные решения уравнений Эйнштейна, находить простейшие новые решения, строить простейшие космологические модели.	Неудовлетворител Не знает определения основных понятий и основные утверждения теории гравитации, известные решения уравнений Эйнштейна. Не умеет воспризводить известные решения уравнений Эйнштейна, находить простейшие

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Удовлетворительн
		модели.
		Хорошо
		Частично знает определения основных
		понятий и основные утверждения теории
		гравитации, известные решения уравнений
		Эйнштейна. Умеет воспризводить известные
		решения уравнений Эйнштейна, не умеет
		находить простейшие новые решения,
		строить простейшие космологические
		модели.
		Отлично
		Знает определения основных понятий и
		основные утверждения теории гравитации,
		известные решения уравнений Эйнштейна.
		Умеет воспризводить известные решения
		уравнений Эйнштейна, не умеет находить
		простейшие новые решения, строить
		простейшие космологические модели.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100

«**хорошо**» - от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
Входной контроль	Входной контроль	аналитическая и дифференциальная
	Входное тестирование	геометрия, тензорный анализ.
ОПК.1.1	KT №1	Многообразие, касательное
Осуществляет сбор и анализ	Письменное контрольное	пространство, тензоры и тензорные
информации по решаемой	мероприятие	поля, скобка Ли, группа Ли, алгебра Ли,
проблеме		генераторы группы Ли
ОПК.2.2		
Создает новые математические		
модели		
ОПК.2.1		
Составляет математическое		
описание решаемой проблемы		
ОПК.1.1	KT №2	Различные источники гравитационного
Осуществляет сбор и анализ	Письменное контрольное	поля. Анизотропные космологические
информации по решаемой	мероприятие	решения уравнений Эйнштейна.
проблеме		Математические модели черных дыр и
ОПК.2.2		кротовых нор.
Создает новые математические		r · · · · · · · · · · · · · · · · · · ·
модели		
ОПК.2.1		
Составляет математическое		
описание решаемой проблемы		

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ОПК.1.1 Осуществляет сбор и анализ информации по решаемой проблеме ОПК.2.2 Создает новые математические модели ОПК.2.1 Составляет математическое описание решаемой проблемы	ИКМ Итоговое контрольное мероприятие	Принципы общей теории относительности, уравнения Эйнштейна, астрофизические и космологические решения уравнений Эйнштейна. Калибровочные поля, теория Янга-Миллса, спонтанное нарушение симметрии и механизм Хиггса, модель Вайнберга-Салама.

Спецификация мероприятий текущего контроля

Входной контроль

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: ${f 0}$

Проходной балл: 0

Показатели оценивания	Баллы
верно решает задания по теории дифференциальных уравнений	40
верно решает задания по тензорному анализу	40
верно решает задания по дифференциальной геометрии	20

KT №1

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Знает формулировки и доказательства теорем	20
Умеет решать типовые задачи	10
Знает определения понятий	10

KT No2

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 9

Показатели оценивания	Баллы
знает основные положения общей теории относительности и релятивистской космологии	10
умеет находить решения Шварцшильда и Фридмана	10

ИКМ

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
решать уравнения Эйнштейна, проводить исследование метрики на наличие спонтанного	20
нарушения симметрии	
основные положения общей теории относительности, теории групп Ли, теории	20
калибровочных полей	