МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра фундаментальной математики

Авторы-составители: Скачкова Елена Александровна

Шеремет Галина Геннадьевна

Рабочая программа дисциплины

ТЕОРИЯ ГРАФОВ

Код УМК 92259

Утверждено Протокол №9 от «22» мая 2020 г.

1. Наименование дисциплины

Теория графов

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в базовую часть Блока « M.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 02.04.01 Математика и компьютерные науки

направленность Математическое моделирование

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Теория графов** у обучающегося должны быть сформированы следующие компетенции:

02.04.01 Математика и компьютерные науки (направленность : Математическое моделирование)

ОПК.1 Способен находить, формулировать и решать актуальные и значимые проблемы прикладной и компьютерной математики

Индикаторы

ОПК.1.2 Выявляет и формулирует актуальные проблемы; обосновывает актуальность, теоретическую и практическую значимость

ОПК.1.3 Разрабатывает план и программу решения проблемы

4. Объем и содержание дисциплины

Направления подготовки	02.04.01 Математика и компьютерные науки (направленность:	
	Математическое моделирование)	
форма обучения	очная	
№№ триместров,	4	
выделенных для изучения		
дисциплины		
Объем дисциплины (з.е.)	4	
Объем дисциплины (ак.час.)	144	
Контактная работа с	48	
преподавателем (ак.час.),		
в том числе:		
Проведение лекционных	24	
занятий		
Проведение практических	24	
занятий, семинаров		
Самостоятельная работа	96	
(ак.час.)		
Формы текущего контроля	Входное тестирование (1)	
	Итоговое контрольное мероприятие (1)	
	Письменное контрольное мероприятие (2)	
Формы промежуточной	Экзамен (4 триместр)	
аттестации		

5. Аннотированное описание содержания разделов и тем дисциплины

Теория графов

В результате изучения курса студенты должны получить базовые знания по теории графов, а также овладеть основными методами и приемами работы с дискретными структурами данных.

Эти навыки должны быть достаточными для самостоятельного применения известных алгоритмов и разработки новых алгоритмов при решении прикладных задач методами теории графов.

В результате изучения дисциплины специалист должен:

иметь представление:

- о месте теории графов в системе математического образования;
- о значении и областях применения теории графов;
- о роли знаний по дисциплине при освоении смежных дисциплин по выбранной специальности и в сфере профессиональной деятельности;

знать:

- основные понятия и методы теории графов;
- основные теоретико-графовые алгоритмы, а также способы их эффективной реализации; уметь:
- исследовать графы, находить их основные характеристики и структурные особенности;
- применять основные алгоритмы на графах, в том числе при решении реальных производственных задач;

приобрести навыки:

- применения аппарата теории графов для решения прикладных задач.

Входной контроль

Изучение курса опирается на знания, полученные при изучении курса "Дискретная математика". Входной контроль проводится на первом практическом занятии, баллами не оценивается и состоит из 5 элементарных заданий.

Тема 1

Первая тема - "Графы. Способы задания. Основные элементы графа".

При изучении данной темы рассматриваются вопросы:

Графы. Определение. Способы задания. Матричное представление графов. Виды графов. Связность. Подграфы. Остовные деревья.

А также изучаются способы задания графов в пакете Maxima.

Контрольное мероприятие 1

Индивидуальная работа "Виды и способы задания графов. Основные элементы графов".

Включает в себя три задания:

- 1. Работа с матрицами смежности и инциденций ориентируемых и неориентируемых графов. Реализация графов в пакете Maxima.
- 2. Практическая задача, при решении которой необходимо построить графовую модель, провести ее анализ с применением пакета Maxima, интерпретировать полученное решение.
- 3. Определить компоненты связности данного ориентированного графа. Построить компьютерную модель.

Тема 2

Тема 2 - "Циклы и разрезающие множества".

В теме рассматриваются следующие вопросы:

Фундаментальные циклы и разрезающие множества. Эйлеровы и Гамильтоновы графы. Реализация алгоритмов в пакете Maxima.

Контрольное мероприятие 2

Индивидуальное задание по теме "Циклы, разрезы, обходы графа" содержит три задания:

- 1. Для данной текстовой задачи построить графовую модель, определить, является ли построенный граф Гамильтоновым, найти в нем гамильтонов цикл. При исследовании задачи использовать компьютерный пакет Maxima.
- 2. Для данной текстовой задачи построить графовую модель, определить, является ли построенный граф эйлеровым, найти в нем эйлеров цикл. При исследовании задачи использовать компьютерный пакет Maxima.
- 3. Для данного графа найти число всех остовных деревьев, для одного из возможных остовных деревьев построить системы фундаментальных циклов и разрезов, определить, является ли граф эйлеровым, гамильтоновым.

Тема 3

Третья тема - "Задачи, связанные с ориентированными графами"

При изучении данной темы рассматриваются следующие вопросы: топологическая сортировка, задача о назначениях, потоки в сети.

Итоговое контрольное мероприятие

- 1. Определение и способы задания графов: перечислением множеств вершин и ребер, графический, матричный.
- 2. Матрицы смежности и инциденций. Лемма о рукопожатиях.
- 3. Виды графов. Операции над графами.
- 4. Связность неориентируемых и ориентируемых графов, компоненты связности.
- 5. Центр, радиус, диаметр графа. Способы их нахождения.
- 6. Деревья, их свойства.
- 7. Остовное дерево графа. Теорема о числе остовных деревьев графа.
- 8. Минимальное остовное дерево графа.
- 9. Цикломатическое число графа.
- 10. Фундаментальные циклы. Линейное пространство циклов.
- 11. Разрезы и разрезающие множества графа. Матрицы циклов и разрезов.
- 12. Эйлеровы и Гамильтоновы циклы.
- 13. Задача коммивояжера.
- 14. Задача китайского почтальона.
- 15. Плоские и планарные графы.
- 16. Критерии планарности графов.
- 17. Свойства планарных графов. Формула Эйлера.
- 18. Потоки в сетях. Основная задача о максимальном потоке.
- 19. Паросочетания.
- 20. Транспортная задача.
- 21. Задача о назначениях.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Специальные разделы теории графов: учебное пособие / Л. А. Гладков, Н. В. Гладкова, В. В. Курейчик, В. М. Курейчик. Ростов-на-Дону, Таганрог: Издательство Южного федерального университета, 2018. 111 с. ISBN 978-5-9275-2779-3. Текст: электронный // Электроннобиблиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/87761.html
- 2. Кудрявцев, В. Б. Дискретная математика. Теория однородных структур: учебник для бакалавриата и магистратуры / В. Б. Кудрявцев, А. С. Подколзин, А. А. Болотов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 295 с. (Авторский учебник). ISBN 978-5-534-02901-7. Текст: электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/437027

Дополнительная:

- 1. Хаггарти, Р. Дискретная математика для программистов : учебное пособие / Р. Хаггарти. Москва : Техносфера, 2012. 400 с. ISBN 978-5-94836-303-5. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/12723
- 2. Новиков, Ю. В. Основы локальных сетей: учебное пособие / Ю. В. Новиков, С. В. Кондратенко. 3-е изд. Москва: Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. 405 с. ISBN 978-5-4497-0676-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/97563
- 3. Дискретная математика. Часть 1 : учебное пособие / И. П. Болодурина, Т. М. Отрыванкина, О. С. Арапова, Т. А. Огурцова. Оренбург : Оренбургский государственный университет, ЭБС АСВ, 2016. 108 с. ISBN 978-5-7410-1579-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/69898.html

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

https://intuit.ru/studies/courses/58/58/info Теория графов

http://www.psu.ru/elektronnye-resursy-dlya-psu Электронные ресурсы для ПГНИУ

http://www.mathnet.ru/ Общероссийский математический портал

https://intuit.ru/studies/courses/58/58/info Теория графов

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Теория графов** предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета.

Необходимое лицензионное и (или) свободно распространяемое программное обеспечение:

- офисный пакет (LibreOffice или Microsoft Office), пакет программы "Maxima".

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий - компьютерный класс. Состав оборудования определен в Паспорте компьютерного класса.

Для групповых (индивидуальных) консультаций - аудитория, оснащенная меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской. Самостоятельная работа студентов: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-образовательную среду университета, помещения Научной библиотеки ПГНИУ.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.

- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Теория графов

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.1 Способен находить, формулировать и решать актуальные и значимые проблемы прикладной и компьютерной математики

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
	обучения	ooy ichini
ОПК.1.2	иметь представление:	Неудовлетворител
Выявляет и	- о месте теории графов в	Не знает основные понятия теории графов.
формулирует	системе математического	Не умеет формулировать и доказывать
актуальные проблемы;	образования;	основные теоремы теории графов.
обосновывает	- о значении и областях	Удовлетворительн
актуальность,	применения теории графов;	Общие, но не структурированные знания
теоретическую и	знать:	основных понятий теории графов. Знает
практическую	- основные понятия и методы	формулировки основных теорем теории
значимость	теории графов;	графов.
	- основные теоретико-графовые	Хорошо
	алгоритмы, а также способы их	Сформированные, но содержащие отдельные
	эффективной реализации;	пробелы знания основных понятий теории
	уметь:	графов. В целом успешные, но содержащие
	- исследовать графы, находить	отдельные пробелы умения производить
	их основные характеристики и	доказательства теорем теории графов.
	структурные особенности.	Отлично
		Сформированные систематические знания
		основных понятий теории графов.
		Демонстрирует знание формулировок
		основных теорем теории графов и
		полностью сформированное умение их
		доказательства.
ОПК.1.3	знать: основные теоретико-	Неудовлетворител
Разрабатывает план и	графовые алгоритмы, а также	Не владеет навыками построения и анализа
программу решения	способы их эффективной	моделей типичных прикладных задач с
проблемы	реализации;	помощью графов.
	уметь: исследовать графы,	Удовлетворительн
	находить их основные	Демонстрирует частично сформированное
	характеристики и структурные	умение построения графовых моделей
	особенности; применять	типичных прикладных задач.
	основные алгоритмы на графах,	Хорошо
	в том числе при решении	Демонстрирует умение строить графовые
	реальных производственных	модели типичных прикладных задач.
	задач;	Отлично
	владеть: навыками применения	В совершенстве владеет навыками
	аппарата теории графов для	построения и анализа графовых моделей

Индикатор	Планируемые результаты обучения	Критерии оценивания результатов обучения
	решения прикладных задач.	

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция	Мероприятие	Контролируемые элементы	
(индикатор)	текущего контроля	результатов обучения	
Входной контроль	Входной контроль	Знание основных понятий теории	
	Входное тестирование	множеств	
ОПК.1.2	Контрольное мероприятие	ЗНАТЬ: Определение и способы задания	
Выявляет и формулирует	1	графов: перечислением множеств	
актуальные проблемы;	Письменное контрольное	вершин и ребер, графический,	
обосновывает актуальность,	мероприятие	матричный: матрицы смежности и	
теоретическую и практическую		инциденций. УМЕТЬ: составлять	
значимость		математическую модель решаемой	
		проблемы на основе теории графов.	
		ВЛАДЕТЬ: методами компьютерного	
		моделирования при решении задач по	
		теории графов.	
ОПК.1.3	Контрольное мероприятие	ЗНАТЬ: Определение и свойства	
Разрабатывает план и программу 2		деревьев, полных графов; виды	
решения проблемы	Письменное контрольное		
	мероприятие	математическую модель решаемой	
		проблемы на основе теории графов;	
		определять связность графа, находить	
		остовные деревья.ВЛАДЕТЬ: методами	
		компьютерного моделирования при	
		решении задач по теории графов.	

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ОПК.1.3	Итоговое контрольное	ЗНАТЬ: основные понятия и
Разрабатывает план и программу	мероприятие	утверждения теории графов.УМЕТЬ:
решения проблемы	Итоговое контрольное	составлять математическую модель
ОПК.1.2	мероприятие	решаемой проблемы на основе теории
Выявляет и формулирует		графов.ВЛАДЕТЬ: методами
актуальные проблемы;		
обосновывает актуальность,		компьютерного моделирования при
теоретическую и практическую		решении задач по теории графов.
значимость		

Спецификация мероприятий текущего контроля

Входной контроль

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **0** Проходной балл: **0**

Показатели оценивания	Баллы
Знает основные операции над множествами.	20
Знает способы задания конечных множеств.	10
Умеет сравнивать два данных множества.	10

Контрольное мероприятие 1

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Для каждого задания построена компьютерная модель в пакете Mathematica	15
Построена соответствующая тексту второй задачи модель на языке теории графов.	10
Выполнено аналитическое решение третей задачи.	5
Построен граф по данной матрице и матрицы по данному графу в первом задании.	5

Контрольное мероприятие 2

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Решена задача на построение гамильтонова цикла	10

Найдено число остовных деревьев, приведен пример фундаментальных циклов и разрезов.	10
Решена задача на построение эйлерова цикла	10

Итоговое контрольное мероприятие

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Тест содержит 40 вопросов. Каждый из них оценивается в 1 балл	40