МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра нанотехнологий и микросистемной техники

Авторы-составители: Волынцев Анатолий Борисович

Пономарев Роман Сергеевич

Рабочая программа дисциплины

ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ И АВТОМАТИЗАЦИЯ ЭКСПЕРИМЕНТА В ФОТОНИКЕ

Код УМК 95481

Утверждено Протокол №9 от «13» мая 2020 г.

1. Наименование дисциплины

Проведение измерений и автоматизация эксперимента в фотонике

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 28.03.01 Нанотехнологии и микросистемная техника направленность Материалы микро- и наносистемной техники

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Проведение измерений и автоматизация эксперимента в** фотонике у обучающегося должны быть сформированы следующие компетенции:

- 28.03.01 Нанотехнологии и микросистемная техника (направленность : Материалы микро- и наносистемной техники)
- **ПК.3** Способен конструировать основные типы радиоэлектронных и оптоэлектронных устройств на основе базовых элементов, создаваемых методами микро- и наносистемной техники

Индикаторы

ПК.3.2 Применяет основные принципы построения различных оптоэлектронных схем, служащих основой современного приборостроения

4. Объем и содержание дисциплины

Направления подготовки	28.03.01 Нанотехнологии и микросистемная техника	
	(направленность: Материалы микро- и наносистемной техники)	
форма обучения	очная	
№№ триместров,	8	
выделенных для изучения		
дисциплины		
Объем дисциплины (з.е.)	3	
Объем дисциплины (ак.час.)	108	
Контактная работа с	42	
преподавателем (ак.час.),		
в том числе:		
Проведение лекционных	14	
занятий		
Проведение лабораторных	28	
работ, занятий по		
иностранному языку		
Самостоятельная работа	66	
(ак.час.)		
Формы текущего контроля	Письменное контрольное мероприятие (3)	
Формы промежуточной аттестации	Зачет (8 триместр)	

5. Аннотированное описание содержания разделов и тем дисциплины

Проведение измерений и автоматизация эксперимента в фотонике

Физический эксперимент

Основные термины и определения. Классические эксперименты в оптике. Критерии верификации экспериментальных данных. Классификация физического эксперимента. Общие черты экспериментов. Философия измерений.

Автоматизированные системы и их характеристики

Автоматизация измерений. Общие принципы, обеспечивающие эффективность автоматизированные системы экспериментальных исследований. Структура автоматизированной системы. Методы обработки экспериментальных данных.

Измерители мощности и поляризации света

ОЗнакомство со средой LabView. Измерители оптической мощности.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Нанотехнологии в электронике-3.1 / И. И. Амиров, Е. А. Артамонова, А. Г. Балашов [и др.] ; под редакцией Ю. А. Чаплыгин. Москва : Техносфера, 2016. 480 с. ISBN 978-5-94836-423-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/58864.html
- 2. Нанотехнологии и специальные материалы : учебное пособие для вузов / Ю. П. Солнцев, Е. И. Пряхин, С. А. Вологжанина, А. П. Петкова ; под редакцией Ю. П. Солнцева. 3-е изд. Санкт-Петербург : ХИМИЗДАТ, 2020. 336 с. ISBN 078-5-93808-346-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/97818.html
- 3. Схемотехника дискретных устройств. Исследование цифро-аналоговых преобразователей: методические указания к лабораторным работам / составители А. М. Башлыков. Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2014. 19 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт] http://www.iprbookshop.ru/55159.html

Дополнительная:

- 1. Хоровиц Пауль, Хилл Уинфилд Искусство схемотехники: Пер. с англ./Пауль Хоровиц, Уинфилд Хилл.-М.: Мир, 2001, ISBN 5-03-003395-5.-704.
- 2. Автоматизация физических исследований и эксперимента: компьютерные измерения и виртуальные приборы на основе LabVIEW 7 (30 лекций):учебное пособие/П. А. Бутырин [и др.]; ред. П. А. Бутырин.-Москва:ДМК пресс,2005, ISBN 5-94074-084-7.-264.

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

https://books.ifmo.ru/file/pdf/1742.pdf Основы программирования в среде LabVIEW

https://docviewer.yandex.ru/view/0/?*=2yIWkVIHBvblRUdlr6sSrKI7tgp7InVybCI6Imh0dHBzOi8vYm 1zdHUucnUvcHMvfm1iZWxvZGVkb3YvZmlsZW1hbi9kb3dubG9hZC8lRDAlOUMlRDAlQjUlRDElO DIIRDAlQkUlRDAlQjQlRDAlQjglRDElODclRDAlQjUlRDElODElRDAlQkElRDAlQjglRDAlQjUlMj Искусство схемотехники

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Проведение измерений и автоматизация эксперимента в** фотонике предполагает использование следующего программного обеспечения и информационных справочных систем:

- презентационные материалы (слайды по темам лекционных и практических занятий);
- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета.

Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения:

- 1. Операционная система "ALT Linux".
- 2. Приложение позволяющее просматривать и воспроизводить медиаконтент PDF-файлов «Adobe Acrobat Reader DC».
- 3. Программы, демонстрации видео материалов (проигрыватель) «Windows Media Player».
- 4. Программа просмотра интернет контента (браузер) «Google Chrome» или аналогичных.
- 5. Офисный пакет приложений «LibreOffice».

Так же для освоения курса используется любая среда, позволяющая организовать передачу и накопление данных с помощью контроллера, например среда Arduino или LabView.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия проводятся в аудитории, оснащенной презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой или маркерной доской.

Лабораторные занятия проходят в Лаборатории

Материаловедения и Лаборатории компьютерного моделирования, оснащенных специализированным оборудованием. Состав оборудования определен в Паспортах лабораторий.

Текущий контроль осуществляется в аудитории, оснащенной меловой (и) или маркерной доской. Групповые (индивидуальные) консультации проводятся в аудитории, оснащенной меловой (и) или маркерной доской.

К помещениям для самостоятельной работы студентов относятся:

- Аудитория для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченный доступом в электронную информационнообразовательную среду университета.
- Помещения Научной библиотеки ПГНИУ.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Проведение измерений и автоматизация эксперимента в фотонике

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ПК.3 Способен конструировать основные типы радиоэлектронных и оптоэлектронных устройств на основе базовых элементов, создаваемых методами микро- и наносистемной техники

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
ПК.3.2	Знать методы проведения	Неудовлетворител
Применяет основные	эксперимента в области	Оценка «неудовлетворительно» выставляется
принципы построения	интегральной фотоники и	студентам, обнаружившим пробелы в
различных	волоконной оптики. Владеть	знаниях основного учебного материала,
оптоэлектронных схем,	несколькими методоми	допускающим принципиальные ошибки в
служащих основой	автоматического измерения	выполнении предусмотренных программой
современного	оптических характеристик	заданий. Такой оценки заслуживают ответы
приборостроения	исследуемых систем. Уметь	студентов, носящие несистематизированный,
	проводить обработку и анализ	отрывочный, поверхностный характер, когда
	полученных измерений.	студент не понимает существа излагаемых
		им вопросов, что свидетельствует о том, что
		студент не может дальше продолжать
		обучение или приступать к
		профессиональной деятельности без
		дополнительных занятий по
		соответствующей дисциплине.
		Удовлетворительн
		На «удовлетворительно» оцениваются
		ответы студентов, показавших знание
		основного учебного материала в объеме,
		необходимом для дальнейшей учебы и в
		предстоящей работе по профессии,
		справляющихся с выполнением заданий,
		предусмотренных программой. Как правило
		оценка «удовлетворительно» выставляется
		студентам, допустившим погрешности в
		ответе на экзамене и при выполнении
		экзаменационных заданий, не носящие
		принципиального характера, когда
		установлено, что студент обладает
		необходимыми знаниями для последующего
		устранения указанных погрешностей под
		руководством преподавателя.
		Хорошо
		Оценка «хорошо» выставляется студентам,

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Хорошо
		обнаружившим полное знание учебного
		материала, успешно выполняющим
		предусмотренные в программе задания,
		усвоившим основную литературу,
		рекомендованную кафедрой. Этой оценки,
		как правило, заслуживают студенты,
		демонстрирующие систематический
		характер знаний по дисциплине и способные
		к их самостоятельному пополнению и
		обновлению в ходе дальнейшей учебной
		работы и профессиональной деятельности.
		Отлично
		Оценки «отлично» заслуживает студент,
		обнаруживший всестороннее,
		систематическое и глубокое знание учебного
		и нормативного материала, умеющий
		свободно выполнять задания,
		предусмотренные программой, усвоивший
		основную и знакомый с дополнительной
		литературой, рекомендованной кафедрой.
		Как правило, отличная оценка выставляется
		студентам, усвоившим взаимосвязь
		основных понятий курса, их значение для
		приобретаемой профессии, проявившим
		творческие способности в понимании,
		изложении и использовании учебного
		материала, знающим точки зрения
		различных авторов и умеющим их
		анализировать.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ПК.3.2	Физический эксперимент	Знание о сути физического
Применяет основные принципы	Письменное контрольное	эксперимента. Знание основных
построения различных	мероприятие	определений. Знание о природе и
оптоэлектронных схем,		свойствах световых волн.
служащих основой		
современного приборостроения		
ПК.3.2	Автоматизированные	Знание о принципах построения
Применяет основные принципы	системы и их	автоматизированных систем. Знание о
построения различных	характеристики	методах обработки экспериментальных
оптоэлектронных схем,	Письменное контрольное	данных. Знание об основных
служащих основой	мероприятие	составляющий автоматизированных
современного приборостроения		систем.
ПК.3.2	Измерители мощности и	Знание о принципах устройства
Применяет основные принципы	поляризации света	измерителя мощности световой волны.
построения различных	Письменное контрольное	Владение интерфейсом программы
оптоэлектронных схем,	мероприятие	LabView. Навыки составления схем.
служащих основой		
современного приборостроения		

Спецификация мероприятий текущего контроля

Физический эксперимент

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 9

Показатели оценивания	Баллы
	1

Знание о сути физического эксперимента.	9
Знание о природе и свойствах световых волн.	6
Знание основных определений.	5

Автоматизированные системы и их характеристики

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Знание о методах обработки экспериментальных данных.	17
Знание об основных составляющий автоматизированных систем.	
Знание о принципах построения автоматизированных систем.	8

Измерители мощности и поляризации света

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Владение интерфейсом программы LabView.	17
Навыки составления схем.	15
Знание о принципах устройства измерителя мощности световой волны.	8