МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра ботаники и генетики растений

Авторы-составители: Боронникова Светлана Витальевна

Комарова Лидия Васильевна

Рабочая программа дисциплины

ГЕНЕТИКА И СЕЛЕКЦИЯ

Код УМК 50770

Утверждено Протокол №11 от «17» мая 2021 г.

1. Наименование дисциплины

Генетика и селекция

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в обязательную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление подготовки: **19.03.01** Биотехнология направленность Микробные и клеточные технологии

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Генетика и селекция у обучающегося должны быть сформированы следующие компетенции:

19.03.01 Биотехнология (направленность : Микробные и клеточные технологии)

ОПК.3 Способен изучать, использовать, анализировать биологические объекты и процессы для ведения профессиональной деятельности

Индикаторы

ОПК.3.1 Демонстрирует знания биологических объектов и процессов в профессиональной деятельности

4. Объем и содержание дисциплины

Направление подготовки	19.03.01 Биотехнология (направленность: Микробные и клеточные
	технологии)
форма обучения	очная
№№ триместров,	5
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	3
Объем дисциплины (ак.час.)	108
Контактная работа с	42
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	28
занятий	
Проведение лабораторных	14
работ, занятий по	
иностранному языку	
Самостоятельная работа	66
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Защищаемое контрольное мероприятие (2)
	Итоговое контрольное мероприятие (1)
Формы промежуточной	Экзамен (5 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Генетика и селекция.Второй семестр

Развитие представлений о наследственности. Методы исследования генетического материала на молекулярном, клеточном, организменном и популяционном уровнях. Изменчивость наследственного материала. Теория гена. Структура и организация генома. Молекулярные механизмы генетических процессов и регуляции действия генов. Генетика пола. Основы молекулярной генетики. Популяционная генетика. Генетические основы селекции. Генетика человека. Использование генетического анализа в медицинской генетике и практической селекции. Основные методы и принципы генетической инженерии, использование генетических подходов в современной биотехнологии.

Раздел 1. Наследственность

Предмет и задачи генетики. Материальные основы наследственности. Основные закономерности наследования.

Тема 1. Законы наследования.

Законы наследования. Моногибрибное скрещивание, открытое Г.Менделем: единообразие гибридов первого поколения, расщепление во втором поколении. Представление об аллелях и их взаимодействиях: полное и неполное доминирование, кодоминирование. Закон "чистоты гамет". Гомозиготность и гетерозиготность. Анализирующее скрещивание, анализ типов и со-отношения гамет у гибридов. Расщепление по фенотипу и генотипу во втором поколении и анализирующем скрещивании при моногенном контроле признака и разных типах аллельных взаимодействий (3:1, 1:2, 1:1). Относительный характер доминирования. Возможные биохимические механизмы доминирования. Закономерности наследования в ди- и полигибридных скрещиваниях при моногенном контроле каждого признака: единообразие первого поколения и расщепление во втором поколении. Закон независимого наследования генов. Статистический характер расщеплений. Общая формула расщеплений при независимом наследовании. Значение мейоза в осуществлении законов "чистоты гамет" и независимого наследования. Условия осуществления "менделевских" расщеплений.

Тема 2. Взаимодействие неаллельных генов.

Отклонения от менделевских расщеплений при ди- и полигенном контроле признаков. Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Особенности наследования количественных признаков (полигенное наследование). Использование статистических методов при изучении количественных признаков. Представление о генотипе как сложной системе аллельных и не аллельных взаимодействий генов. Плейотропное действие генов. Пенентрантность и экспрессивность.

Тема 3. Генетика пола и признаки, сцепленные с полом.

Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения пола. Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при нерасхождении половых хромосом. Балансовая теория определения пола. Гинандроморфизм.

Тема 4. Сцепленное наследование и кроссинговер.

Значение работ школы Т.Моргана в изучении сцепленною наследования признаков. Особенности наследования при сцеплении. Группы сцепления. Кроссинговер. Значение анализирующего скрещивания и тетрадного анализа при изучении кроссинговера. Цитологические доказательства кроссинговера. Множественные перекресты. Интерференция. Линейное расположение генов в хромосомах. Основные положения хромосомной теории наследственности по Т.Моргану. Генетические карты, принцип их построения у эукариот. Цитологические карты хромосом. Митотический кроссинговер и его использование для картирования хромосом. Хромосомная теория наследственности

Моргана, ее основные положения.

Раздел 2. Молекулярные механизмы наследственности и изменчивости

Ненаследственная изменчивость. Наследственная изменчивость. Предмет и основные методы селекции.

Тема 5. Молекулярные основы наследственности. Генетический код.

Генетическая роль ДНК. Полуконсервативная репликация ДНК. Энзимология репликации. Компактизация ДНК и структура хроматина. Уникальные и повторяющиеся последовательности в ДНК. Молекулярная структура основных элементов хромосомы. Искусственные хромосомы.

Тема 6. Генетика прокариот. Лактозный оперон.

Нуклеоид прокариот. Внехромосомные носители наследственности. Изменчивость прокариот. Генетическая рекомбинация прокариот: трансформация, трансдукция, трансфекция, конъюгация. Лактозный оперон, регуляция.

Раздел 3. Изменчивость и генетика биологических систем

Наследственная и ненаследственная изменчивость. Популяция как биологическая система. Эволюционная и популяционная генетика. Генетика человека. Проблемы медицинской генетики.

Тема 7. Изменчивость. Генетика популяций.

Мутационный процесс. Генные мутации и теория мутационного процесса. Классификация мутаций. Спонтанные и индуцированные мутации. Методы изучения мутаций. Причины генных мутаций. Качественные и количественные закономерности мутационного процесса. Первичные и предмутационные изменения генетического материала. "Адаптивный" мутагенез. Сайт-направленный мутагенез in vitro.

Тема 8. Генетика человека

Человек как объект генетики. Методы генетики человека. Медицинская генетика. Значение диагностики наследственных болезней и пути их предотвращения. Медико-генетическое консультирование. Геном человека и проблема генетической паспортизации.

Тема 9. Наследственная изменчивость

Наследственная изменчивость, ее виды. Мутации. Виды мутаций, их причины.

Тема 10. Генетические основы селекции.

Предмет и методология селекции. Понятие о пород. Закон гомологических рядов в наследственной изменчивости. Методы отбора: индивидуальный и массовый отбор. Отбор по фенотипу и генотипу (оценка по родословной и качеству потомства). Значение наследственной изменчивости организмов для селекционного процесса и эволюции. Роль полиплоидии в повышении продуктивности растений. Системы скрещиваний в селекции растений и животных. Аутбридинг. Инбридинг. Линейная селекция. Отдаленная гибридизация. Явление гетерозиса. Использование индуцированных мутаций и комбинативной изменчивости в селекции растений, животных и микроорганизмов. Селекция микроорганизмов в современной биотехнологии.

Раздел 4. Структура геномов и молекулярные механизмы генетических процессов.

Теория гена. Структура геномов прокариот и эукариот. Реализация генетической информации. Молекулярные механизмы регуляции действия генов. Основные методы и принципы генетической инженерии, использование генетических подходов в современной биотехнологии.

Тема 11. Теория гена.

Критерии аллелизма. Противоречия критериев аллелизма. Анализ тонкой структуры гена. Матричные процессы и действие гена. Транскрипция ДНК. Трансляция иРНК. Генетический код. Как рибосома считывает генетический код? Генетический анализ трансляции. Супрессия. Молекулярная биология гена. Геномика.

Тема 12. Структура геномов прокариот и эукариот.

Интрон-экзонная организация генов эукариот, сплайсинг. Структурная организация генома эукариот. Классификация повторяющихся элементов генома. Семейства генов. Псевдогены. Регуляторные элементы генома. Геномика. Молекулярно-генетические методы картирования генома. Проблемы происхождения и молекулярной эволюции генов. Генетический анализ лактозного оперона. Регуляция транскрипции на уровне терминации на примере триптофанового оперона. Принципы регуляции действия генов у эукариот. Транскрипционно активный хроматин. Особенности организации промоторной области у эукариот.

Тема 13. Молекулярные механизмы генетических процессов.

Генетический контроль и молекулярные механизмы репликации. Функции нуклеиновых кислот в реализации генетической информации: репликация, транскрипция и трансляция. Методологическое значение принципа передачи генетической информации: ДНК<РНК<белок. Полуконсервативный способ репликации ДНК. Полигенный контроль процесса репликации. Схема событий в вилке репликации. Понятие о репликоне. Особенности организации и репликации хромосом эукариот. Основные методы и принципы генетической инженерии.

Тема 14. Регуляция экспрессии генов.

Принципы регуляции действия генов у эукариот. Транскрипционно активный хроматин. Особенности организации промоторной области у эукариот. Посттранскрипционный уровень регуляции синтеза белков. Роль мигрирующих генетических элементов в регуляции генного действия. Взаимодействие специфических белков с участками ДНК в непосредственной близости от стартового участка транскрипции. Теория оперона.

Использование генетических подходов в современной биотехнологии.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Жимулёв, И. Ф. Общая и молекулярная генетика: учебное пособие для вузов / И. Ф. Жимулёв; под редакцией Е. С. Беляев, А. П. Акифьев. Новосибирск: Сибирское университетское издательство, 2017. 480 с. ISBN 978-5-379-02003-3. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. http://www.iprbookshop.ru/65279
- 2. Осипова, Л. А. Генетика в 2 ч. Часть 1 : учебное пособие для вузов / Л. А. Осипова. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 243 с. (Университеты России). ISBN 978-5-534-07721-6. Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/434577
- 3. Алферова, Γ . А. Генетика : учебник для академического бакалавриата / под редакцией Γ . А. Алферовой. 3-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 200 с. (Бакалавр. Академический курс). ISBN 978-5-534-07420-8. Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/434370
- 4. Осипова, Л. А. Генетика. В 2 ч. Часть 2 : учебное пособие для вузов / Л. А. Осипова. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 251 с. (Университеты России). ISBN 978-5-534-07722-3. Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/437663

Дополнительная:

- 1. Задачи по современной генетике: учебное пособие/В. М. Глазер [и др.]; ред. М. М. Асланян.-Москва:Книжный дом "Университет", 2005, ISBN 5-98227-080-6.-224.-Библиогр.: с. 223
- 2. Молекулярная генетика: учебно-методическое пособие/Федеральное агентство по образованию, Пермский государственный университет. -Пермь, 2007, ISBN 5-7944-0913-4.-150.-Библиогр.: с. 149

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

https://www.ncbi.nlm.nih.gov Национальный центр биотехнологической информации https://www.ncbi.nlm.nih.gov/pubmed Библиографическая база данных NCBI

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Генетика и селекция** предполагает использование следующего программного обеспечения и информационных справочных систем: презентационные материалы (слайды по темам лекционных и практических занятий); доступ в режиме on-line в Электронную библиотечную систему (ЭБС) доступ в электронную информационно-образовательной среду университета.

Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения:

- 1) офисный пакет приложений (текстовый процессор, программа для подготовки электронных презентаций);
- 2) программа демонстрации видеоматериалов (проигрыватель);
- 3) приложение, позволяющее просматривать и воспроизводить медиаконтент PDF-файлов;
- 4) программы для просмотра и редактирования цифровых изображений;
- 5) программы для просмотра и редактирования DjVu-файлов.

Дисциплина не предусматривает использование специализированного программного обеспечения

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для проведения лекционных занятий необходима учебная аудитория, оснащенная специализированной мебелью, демонстрационным оборудованием (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения лабораторных занятий необходима "Лаборатория цитологии и генетики" оснащенная лабораторным оборудованием, учебно-наглядными пособиями. Состав оборудования, учебно-наглядных пособий представлен в паспорте лаборатории.

Для проведения текущего контроля, промежуточной аттестации, групповых и индивидуальных консультаций необходима учебная аудитория, оснащенная специализированной мебелью, меловой (и) или маркерной доской.

Для самостоятельной работы необходимы помещения Научной библиотеки ПГНИУ. Помещения

Научной библиотеки ПГНИУ обеспечивают доступ к локальной и глобальной сетям.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Генетика и селекция

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.3 Способен изучать, использовать, анализировать биологические объекты и процессы для ведения профессиональной деятельности

Компетенция	Планируемые результаты	Критерии оценивания результатов	
(индикатор)	обучения	обучения	
ОПК.3.1	Демонстрирует знания о	Неудовлетворител	
Демонстрирует знания	проявлениях наследственности	Не умеет самостоятельно проводить	
биологических	и изменчивости, генетических	исследования с использованием знаний о	
объектов и процессов в	основах селекции организмов,	проявлениях наследственности и	
профессиональной	принципах генетической	изменчивости, генетических основах	
деятельности	инженерии, умеет решать	селекции организмов, не знает принципы	
	задачи по генетике	генетической инженерии, не умеет решать	
		задачи по генетике	
		Удовлетворительн	
		Частично умеет самостоятельно проводить	
		исследования с использованием знаний о	
		проявлениях наследственности и	
		изменчивости, генетических основах	
		селекции организмов, не знает принципы	
		генетической инженерии, не умеет решать	
		задачи по генетике	
		Хорошо	
		Умеет самостоятельно проводить	
		исследования с использованием знаний о	
		проявлениях наследственности и	
		изменчивости, генетических основах	
		селекции организмов, знает принципы	
		генетической инженерии, умеет решать	
		задачи по генетике	
		Отлично	
		Умеет самостоятельно проводить	
		исследования с использованием знаний о	
		проявлениях наследственности и	
		изменчивости, генетических основах	
		селекции организмов, знает принципы	
		генетической инженерии, умеет решать	
		задачи по генетике	

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: СУОС

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 50 до 60

«неудовлетворительно» / «незачтено» менее 50 балла

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
Входной контроль	Тема 1. Законы	Знать основные законы наследования и
ОПК.3.1	наследования.	наследоственности
Демонстрирует знания	Входное тестирование	
биологических объектов и		
процессов в профессиональной		
деятельности		
ОПК.3.1	Тема 2. Взаимодействие	Типы взаимодействия неаллельных
Демонстрирует знания	неаллельных генов.	генов: комплементарность, эпистаз и
биологических объектов и	Защищаемое контрольное	полимерия; пенетрантность,
процессов в профессиональной	мероприятие	экспрессивность; решение типовых
деятельности		задач по теме.
ОПК.3.1	Тема 4. Сцепленное	Соотношения генотипов,
Демонстрирует знания	наследование и	свидетельствующие о сцепленном
биологических объектов и	кроссинговер.	наследовании; группы сцепления;
процессов в профессиональной	Защищаемое контрольное	определение процента кроссинговера;
деятельности	мероприятие	явление притяжения и отталкивания;
		основные положения хромосомной
		теории наследственности Т.Моргану;
		решение типовых задач по теме.
ОПК.3.1	Тема 12. Структура	Знать структуру геномов прокариот и
Демонстрирует знания	геномов прокариот и	эукариот в общем. Знать структуру
биологических объектов и	эукариот.	молекул ДНК, биосинтеза белка.
процессов в профессиональной	Итоговое контрольное	
деятельности	мероприятие	

Спецификация мероприятий текущего контроля

Тема 1. Законы наследования.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 0

Проходной балл: 0

Показатели оценивания	Баллы
Знает основные законы наследования и наследоственности	10
Не знает основные законы наследования и наследоственности	0

Тема 2. Взаимодействие неаллельных генов.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	Баллы
Знает типы взаимодействия неаллельных генов и формулы расщепления во втором	15
поколении; решает типовые задачи	
Знает законы наследования при моно-, дигибридных скрещиваниях, наследование	15
признаков, сцепленных с полом.	

Тема 4. Сцепленное наследование и кроссинговер.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 20

Показатели оценивания	Баллы
Выполнение всех заданий текущего контроля	40
Выполнение менее половины заданий текущего контроля	20

Тема 12. Структура геномов прокариот и эукариот.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 20

Показатели оценивания	Баллы
Знать структуру молекул ДНК, биосинтеза белка	20
Знать структуру геномов прокариот и эукариот в общем.	20