МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра информационных систем и математических методов в экономике

Авторы-составители: Бячков Андрей Борисович

Рабочая программа дисциплины

МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

Код УМК 96075

Утверждено Протокол №9 от «21» мая 2019 г.

1. Наименование дисциплины

Методы оптимальных решений

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в обязательную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: **09.03.02** Информационные системы и технологии направленность Информационные системы и технологии в экономике

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Методы оптимальных решений** у обучающегося должны быть сформированы следующие компетенции:

- **09.03.02** Информационные системы и технологии (направленность : Информационные системы и технологии в экономике)
- **ПК.1** Способность применять в исследовательской деятельности современный математический аппарат, разрабатывать на основе социально-экономической информации компьютерные модели, проводить вычислительные эксперименты с целью их верификации

Индикаторы

ПК.1.1 Применяет в исследовательской деятельности современный математический аппарат, фундаментальные концепции и современные методологии

4. Объем и содержание дисциплины

Направления подготовки	09.03.02 Информационные системы и технологии		
	(направленность: Информационные системы и технологии в		
	экономике)		
форма обучения	очная		
№№ триместров,	4,5		
выделенных для изучения			
дисциплины			
Объем дисциплины (з.е.)	5		
Объем дисциплины (ак.час.)	180		
Контактная работа с	70		
преподавателем (ак.час.),			
в том числе:			
Проведение лекционных	28		
занятий			
Проведение практических	28		
занятий, семинаров			
Проведение лабораторных	14		
работ, занятий по			
иностранному языку			
Самостоятельная работа	110		
(ак.час.)			
Формы текущего контроля	Входное тестирование (1)		
	Защищаемое контрольное мероприятие (4)		
	Итоговое контрольное мероприятие (2)		
Формы промежуточной	Зачет (4 триместр)		
аттестации	Экзамен (5 триместр)		

5. Аннотированное описание содержания разделов и тем дисциплины

Методы оптимальных решений. Первый триместр.

Курс посвящен исследованию методов опимальных решений, а также формированию практических навыков их использования. Меиоды оптимальных решений - это методы математического моделирования, которые применяют для отыскания экстремальных значений (минимумов или максимумов) некоторых количественных характеристик системы, выражающих степень пригодности каждой допустимой альтернативы в качестве средства достижения поставленной цели.

Входное тестирование

Проверяются остаточные знания по дисциплинам "Алгебра", "Математический анализ"

Раздел 1. Введение в математическое моделирование и теорию оптимизации

Математическая модель - это внутренне непротиворечивая замкнутая система математических соотношений, предназначенная для количественного изучения определенного качества реального объекта или процесса. В свою очередь моделирование - это совокупность действий, связанных с построением, анализом и использованием моделей.

Данный раздел содержит 2 темы:

Тема 1. Основные понятия и термины.

Тема 2. Примеры задач, требующих для решения методов оптимизации.

КМ №1 Повторение. Анализ ФНП

Проверка знаний по разделу 1

Раздел 2. Классические задачи оптимизации. Безусловный экстремум

Рассматривается задача оптимизации условного экстремума в классической постановке: ограничения в форме равенств.

Основной метод решения - метод множителей Лагранжа. Условия применимости метода. Необходимые и достаточные условия условного экстремума.

КМ №2 Решение задач на безусловный экстремум

Проверка знаний по разделу 2

Раздел З.Классические задачи оптимизации. Условный экстремум

Рассматривается задача оптимизации условного экстремума в классической постановке: ограничения в форме равенств.

Основной метод решения - метод множителей Лагранжа. Условия применимости метода. Необходимые и достаточные условия условного экстремума.

Итоговое КМ Решение классических задач оптимизации

Проверка знаний по разделу 3

Методы оптимальных решений. Второй триместр.

Раздел 4.Задачи линейного программирования.

Линейное программирование - это раздел математического программирования, в котором изучаются теория и методы решения задач, математические модели которых включают линейную функцию цели и систему ограгничений в виде линейных неравенств и/или уравнений.

Поскольку на практике до 80-85% всех задач относят к задачам этого типа, данному разделу уделено особое внимание.

В рамках этого раздела рассматриваются вопросы, связанные с формами постановки задач линейного программирования, с симплекс-методом, теорией двойственности. В силу специфики транспортные

задачи вынесены в отдельную тему.

КМ №1 Решение задач линейного программирования

Проверка знаний по разделу 4

Раздел 5. Транспортная задача

Нелинейное программирование - раздел математического программирования, посвященный теории и методам нахождения экстремумов (минимумов и максимумов) нелинейных функций многих переменных при наличии дополнительных ограничений на эти переменные. Для решения задач нелинейного программирования, в зависимости от конкретной ситуации, используются различные методы: метод множителей Лагранжа, метод штрафных функций и другие.

КМ №2 Решение транспортной задачи

Проверка знаний по разделу 5

Раздел 6. Задачи нелинейного программирования.

В данном разделе рассматриваются методы оптимизации в условиях неопределенности и риска. Принятие решений в условиях риска предполагает, что данные описываются с помощью вероятностных распределений.

Принятие решений в условиях неопределенности происходит в случае, когда данным нельзя поставить в соответствие некоторые относительные веса, которые представляли бы степень их значимости в процессе принятия решений.

Итоговое КМ Решение задач нелинейного программирования

Проверка знаний по всем разделам курса.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

1. Методы оптимизации : учебник и практикум для бакалавриата и магистратуры / Ф. П. Васильев, М. М. Потапов, Б. А. Будак, Л. А. Артемьева ; под редакцией Ф. П. Васильева. — Москва : Издательство Юрайт, 2019. — 375 с. — (Бакалавр и магистр. Академический курс). — ISBN 978-5-9916-6157-7. — Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/433032

Дополнительная:

- 1. Методы оптимизации : учебное пособие / Е. К. Ершов, И. И. Кораблёва, Э. Е. Пак, С. И. Прокофьева. Санкт-Петербург : Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2016. 89 с. ISBN 978-5-9227-0597-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/63634.html
- 2. Методы оптимизации: теория и алгоритмы : учебное пособие для академического бакалавриата / А. А. Черняк, Ж. А. Черняк, Ю. М. Метельский, С. А. Богданович. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 357 с. (Бакалавр. Академический курс). ISBN 978-5-534-04103-3. Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/438378
- 3. Интрилигатор М. Математические методы оптимизации и экономическая теория:учебное пособие : перевод с английского/М. Интрилигатор ; ред. А. А. Конюс ; пер. Г. И. Жукова.-Москва:Айриспресс,2002, ISBN 5-8112-0042-0.-576.

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

https://math.semestr.ru/dinam/task-1.php.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Методы оптимальных решений** предполагает использование следующего программного обеспечения и информационных справочных систем:

- презентационные материалы (слайды по темам лекционных и практических занятий);
- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательную среду университета. Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения:

1. MS Excel

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

В учебном процессе для изучения дисциплины «Методы оптимальных решений» для проведения лекционных и практических занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения лабораторных занятий требуется лаборатория информационных технологий в прогнозировании и управлении процессами социально-экономического развития, оснащенная специализированным оборудованием, или компьютерный класс. Состав оборудования определен в Паспорте лаборатории или компьютерного класса.

Для самостоятельной работы требуется аудитория , оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченный доступом в электронную информационно-образовательную среду университета, а так же помещения Научной библиотеки ПГНИУ.

Для текущего контроля требуется аудитория, оснащенная меловой (и) или маркерной доской. Индивидуальные и групповые консультации - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской или аудитория, оснащенная меловой (и) или маркерной доской

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Методы оптимальных решений

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ПК.1 Способность применять в исследовательской деятельности современный математический аппарат, разрабатывать на основе социально-экономической информации компьютерные модели, проводить вычислительные эксперименты с целью их верификации

Компетенция	Планируемые результаты	Критерии оценивания результатов
(индикатор)	обучения	обучения
ПК.1.1	Применяет в исследовательской	Неудовлетворител
Применяет в	деятельности современный	Не знает: основные типы задач
исследовательской	математический аппарат,	оптимизации, задача на безусловный
деятельности	фундаментальные концепции и	экстремум функции одной и более
современный	современные методологии в	переменных, задача условного экстремума
математический	части теории оптимизации.	типа равенств, задача нелинейного
аппарат,	Знать: основные типы задач	программирования, задача выпуклого
фундаментальные	оптимизации, задача на	программирования, задача линейного
концепции и	безусловный экстремум	программирования, транспортная задача.
современные	функции одной и более	Не умеет: применять основные методы
методологии	переменных, задача условного	решения задач математического
	экстремума типа равенств,	программирования (графический метод,
	задача нелинейного	прямой метод, симплекс-метод, специальные
	программирования, задача	методы решения транспортной задачи, метод
	выпуклого программирования,	множителей Лагранжа).
	задача линейного	Не владеет навыками: различать основные
	программирования,	задачи математического программирования,
	транспортная задача.	правильно подбирать метод решения.
	Уметь: применять основные	Удовлетворительн
	методы решения задач	Знает на удовлетворительном уровне:
	математического	основные типы задач оптимизации, задача на
	программирования	безусловный экстремум функции одной и
	(графический метод, прямой	более переменных, задача условного
	метод, симплекс-метод,	экстремума типа равенств, задача
	специальные методы решения	нелинейного программирования, задача
	транспортной задачи, метод	выпуклого программирования, задача
	множителей Лагранжа).	линейного программирования, транспортная
	Владеть навыками: различать	задача.
	основные задачи	удовлетворительный уровень умения:
	математического	применять основные методы решения задач
	программирования, правильно	математического программирования
	подбирать метод решения.	(графический метод, прямой метод,
		симплекс-метод, специальные методы
		решения транспортной задачи, метод
		множителей Лагранжа).

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Удовлетворительн
		Удовлетворительное владение навыками:
		различать основные задачи математического
		программирования, правильно подбирать
		метод решения.
		Хорошо
		В целом хорошо знает: основные типы задач
		оптимизации, задача на безусловный
		экстремум функции одной и более
		переменных, задача условного экстремума
		типа равенств, задача нелинейного
		программирования, задача выпуклого
		программирования, задача линейного
		программирования, транспортная задача.
		В целом сформировано умение: применять
		основные методы решения задач
		математического программирования
		(графический метод, прямой метод,
		симплекс-метод, специальные методы
		решения транспортной задачи, метод
		множителей Лагранжа).
		в целом демонстрирует хорошее владение
		навыками: различать основные задачи
		математического программирования,
		правильно подбирать метод решения.
		Отлично
		Знает на высоком уровне: основные типы
		задач оптимизации, задача на безусловный
		экстремум функции одной и более
		переменных, задача условного экстремума
		типа равенств, задача нелинейного
		программирования, задача выпуклого
		программирования, задача линейного
		программирования, транспортная задача.
		сформировано уверенное умение: применять
		основные методы решения задач
		математического программирования
		(графический метод, прямой метод,
		симплекс-метод, специальные методы решения транспортной задачи, метод
		множителей Лагранжа).
		множителей лагранжа). Высокий уровень владения навыками:
		различать основные задачи математического
		программирования, правильно подбирать
		метод решения.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Входное тестирование Входное тестирование	Проверяются остаточные знания по дисциплинам "Алгебра", "Математический анализ"
ПК.1.1 Применяет в исследовательской деятельности современный математический аппарат, фундаментальные концепции и современные методологии	КМ №1 Повторение. Анализ ФНП Защищаемое контрольное мероприятие	Повторение элементов теории оптимизации: 1. Задача на безусловный экстремум функции одной переменной 2. Характеристики ФМП в точке 3. Задача на выпуклость функции двух переменных
ПК.1.1 Применяет в исследовательской деятельности современный математический аппарат, фундаментальные концепции и современные методологии	КМ №2 Решение задач на безусловный экстремум Защищаемое контрольное мероприятие	Решение классических задач оптимизации: 1. Задача на безусловный
ПК.1.1 Применяет в исследовательской деятельности современный математический аппарат, фундаментальные концепции и современные методологии	Итоговое КМ Решение классических задач оптимизации Итоговое контрольное мероприятие	Решение классических задач оптимизации: 1. Задача на безусловный экстремум2. Задача на условный экстремум с ограничениями типа равенства 3. Задача на условный экстремум повышенной сложности

Спецификация мероприятий текущего контроля

Входное тестирование

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 0

Проходной балл: 0

Показатели оценивания	Баллы
Верно решенное задание (максимальный балл)	20
Верно решенное задание (проходной балл)	9
Верно решенное задание (балл за 1 задание)	2

КМ №1 Повторение. Анализ ФНП

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Верно решенное задание (МАКСИМАЛЬНЫЙ БАЛЛ)	30
Верно решенное задание (проходной балл)	13
Верно решенное задание (балл за 1 задание)	5

КМ №2 Решение задач на безусловный экстремум

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Верно решенное задание (максимальный балл)	30
Верно решенное задание (проходной балл)	13
Верно решенное задание (балл за 1 задание)	5

Итоговое КМ Решение классических задач оптимизации

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Верно решенное задание (максимальный балл)	40
Верно решенное задание (проходной балл)	17
Верно решенное задание (балл за 1 задание)	5

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных

мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ПК.1.1 Применяет в исследовательской деятельности современный математический аппарат, фундаментальные концепции и современные методологии	КМ №1 Решение задач линейного программирования Защищаемое контрольное мероприятие	1. Решение задачи линейного программирования (ЗЛП) графическим способом.2. Решение ЗЛП с двумя ограничениями графическим методом с использованием двойственной задачи.3. Решение задачи ЗЛП симплекс-методом.
ПК.1.1 Применяет в исследовательской деятельности современный математический аппарат, фундаментальные концепции и современные методологии	КМ №2 Решение транспортной задачи Защищаемое контрольное мероприятие	Решение транспортной задачи:Метод северо-западного угла, метод
ПК.1.1 Применяет в исследовательской деятельности современный математический аппарат, фундаментальные концепции и современные методологии	Итоговое КМ Решение задач нелинейного программирования Итоговое контрольное мероприятие	Решение задач нелинейного программирования:1) Графическим способом2) Условия Куна-Таккера

Спецификация мероприятий текущего контроля

КМ №1 Решение задач линейного программирования

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Верно решенное задание (максимальный балл)	30
Верно решенное задание (проходной балл)	13
Верно решенное задание (балл за 1 задание)	5

КМ №2 Решение транспортной задачи

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Верно решенное задание (максимальный балл)	30
Верно решенное задание (проходной балл)	13
Верно решенное задание (балл за 1 задание)	5

Итоговое КМ Решение задач нелинейного программирования

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Верно решенное задание (максимальный балл)	40
Верно решенное задание (проходной балл)	17
Верно решенное задание (балл за 1 задание)	5