МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра информационных систем и математических методов в экономике

Авторы-составители: Шишкин Владимир Андреевич

Рабочая программа дисциплины

НЕЧЕТКАЯ ЛОГИКА И НЕЙРОННЫЕ СЕТИ

Код УМК 77072

Утверждено Протокол №9 от «21» мая 2019 г.

1. Наименование дисциплины

Нечеткая логика и нейронные сети

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: **09.03.02** Информационные системы и технологии направленность Информационные системы и технологии в экономике

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Нечеткая логика и нейронные сети** у обучающегося должны быть сформированы следующие компетенции:

09.03.02 Информационные системы и технологии (направленность : Информационные системы и технологии в экономике)

ПК.1 способность применять базовые математические знания для решения задач, связанных с развитием и использованием информационных систем и технологий, включая моделирование процессов и систем

4. Объем и содержание дисциплины

Направления подготовки	09.03.02 Информационные системы и технологии
	(направленность: Информационные системы и технологии в
	экономике)
форма обучения	очная
№№ триместров,	10
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	3
Объем дисциплины (ак.час.)	108
Контактная работа с	42
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	14
занятий	
Проведение лабораторных	28
работ, занятий по	
иностранному языку	
Самостоятельная работа	66
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Защищаемое контрольное мероприятие (2)
	Итоговое контрольное мероприятие (1)
Формы промежуточной	Зачет (10 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Нечеткая логика и нейронные сети

Раздел 1. Нечёткие множества

Понятие нечёткого множества. Основные определения: функция принадлежности, носитель, альфа-сечение, треугольные нормы и конормы, высота множества и т.д. Теоретико-множественные операции над нечёткими множествами. Нечёткие и лингвистические переменные. Методы построения функции принадлежности.

Раздел 2. Нечёткие величины и нечёткая оптимизация

Понятие нечёткой величины. Нечёткие числа и нечёткие интервалы. Принцип обобщения. Нечёткие функции. Нечёткая арифметика. Методы сравнения нечётких величин. Задачи нечёткой оптимизации: модель ожидаемого значения, программирование с возможностными ограничениями, событийное программирование, программирование с нечёткими решениями.

Раздел 3. Нечёткая логика

Лингвистическая переменная истинности. Значения истинности "неизвестно" и "не определено". Составные переменные истинности. Композиционное правило вывода и приближённые рассуждения. Основные алгоритмы нечёткого вывода.

Раздел 4. Нейронные сети

Модели нейронов. Архитектура сетей. Представление знаний. Процессы обучения.

Раздел 5. Обучение с учителем

Однослойный и многослойный персептроны. Понятие об алгоритме обратного распространения. Сети на основе радиальных базисных функций. Машины опорных векторов. Решение задач аппроксимации и классификации. Ассоциативные машины: статические структуры (усреднение по ансамблю и усиление) и динамические структуры (смешение мнений экспертов и иерархическое объединение мнений экспертов).

Раздел 6. Обучение без учителя

Анализ главных компонентов. Карты самоорганизации: модели отображения признаков, процессы конкуренции, кооперации и адаптации. Модели на основе теории информации. Стохастические машины.

Раздел 7. Обучение с подкреплением

Модели обучения с подкреплением.

Раздел 8. Динамические нейросетевые модели

Временная обработка с использованием сетей прямого распространения. Нейродинамика и динамически управляемые рекуррентные сети.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Яхъяева Г. Э. Нечеткие множества и нейронные сети:учебное пособие/Г. Э. Яхъяева.-Москва:Интернет-Университет Информационных Технологий,2006, ISBN 5-94774-510-0.-316.-Библиогр.: с. 315
- 2. Томасова, Д. А. Стратегический анализ с применением размытой логики и теории нечетких множеств : учебное пособие / Д. А. Томасова. Саратов : Ай Пи Эр Медиа, 2019. 105 с. ISBN 978-5-4486-0784-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/86338.html

Дополнительная:

- 1. Интеллектуальные информационные системы и технологии : учебное пособие / Ю. Ю. Громов, О. Г. Иванова, В. В. Алексеев [и др.]. Тамбов : Тамбовский государственный технический университет, ЭБС АСВ, 2013. 244 с. ISBN 978-5-8265-1178-7. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/63850.html
- 2. Хайкин С. Нейронные сети. Полный курс/С. Хайкин ; [пер. с англ. Н. Н. Куссуль, А. Ю. Шелестова ; под ред. Н. Н. Куссуль].-М.:Вильямс,2006, ISBN 5-8459-0890-6.-1104.
- 3. Нечеткие задачи в математическом моделировании : методические указания к самостоятельной работе / составители И. А. Седых, В. А. Скопин. Липецк : Липецкий государственный технический университет, ЭБС ACB, 2013. 22 с. ISBN 2227-8397. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/22896

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

https://stepik.org/course/401/promo Онлайн курс

https://www.coursera.org/specializations/machine-learning-data-

analysis?ranMID=40328&ranEAID=N*EDAps8gF4&ranSiteID=N.EDAps8gF4-

GSRNVEILK2iICdFYPsSvwA&siteID=N.EDAps8gF4-

GSRNVEILK2iICdFYPsSvwA&utm_content=2&utm_medium=partners&utm_source=lin Онлайн курс Курсера

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Нечеткая логика и нейронные сети** предполагает использование следующего программного обеспечения и информационных справочных систем:

- презентационные материалы (слайды по темам лекционных и практических занятий);
- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательную среду университета. Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения:
- 1. пакет офисных приложений

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Материально-техническая база обеспечивается наличием:

- 1. Лекционные занятия аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.
- 2. Занятий семинарского типа (практические занятия) аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.
- 3. Лабораторные занятия Компьютерный класс, оснащенный персональными ЭВМ и соответствующим программным обеспечением. Состав оборудования определен в Паспорте компьютерного класса.
- 4. Самостоятельная работа аудитория для самостоятельной работы, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченная доступом в электронную информационно-образовательную среду университета. Помещения Научной библиотеки ПГНИУ.
- 5. Текущий контроль и промежуточная аттестация аудитория, оснащенная меловой (и) или маркерной доской.

6. Индивидуальные и групповые консультации - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской или аудитория, оснащенная меловой (и) или маркерной доской. Требование к аудиториям определяется видом занятий, предусмотренных соответствующим учебным планом.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Нечеткая логика и нейронные сети

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ПК.1	знать основные методы	Неудовлетворител
способность применять	решения задач, связанных с	Не знает основные методы решения задач,
базовые	развитием и использованием	связанных с развитием и использованием
математические знания	информационных систем и	информационных систем и технологий.
для решения задач,	технологий;	Не умеет применять нечёткую логику и
связанных с развитием	уметь применять знания	нейронные сети для решения задач.
и использованием	нечёткой логики и нейронных	Не владеет навыками практического
информационных	сетей для решения задач;	применения методов нечёткой логики и
систем и технологий,	владеть навыками	сетевого моделирования для решения задач.
включая моделирование	практического применения	Удовлетворительн
процессов и систем	методов нечеткой логики и	Демонстрирует удовлетворительное знание
_	сетевого моделирования для	основных методов решения задач,
	решения задач, связанных с	связанных с развитием и использованием
	развитием и использованием	информационных систем и технологий.
	информационных систем и	Удовлетворительно умеет применять
	технологий, включая	нечёткую логику и нейронные сети для
	моделирование процессов и	решения задач.
	систем.	Демонстрирует слабое владение навыками практического применения методов
		нечёткой логики и сетевого моделирования
		для решения задач.
		Хорошо
		Демонстрирует хорошее знание основных
		методов решения задач, связанных с
		развитием и использованием
		информационных систем и технологий.
		Умеет применять нечёткую логику и
		нейронные сети для решения задач.
		Демонстрирует владение навыками
		практического применения методов
		нечёткой логики и сетевого моделирования
		для решения задач.
		Отлично
		Демонстрирует глубокое знание и
		понимание методов решения задач,
		связанных с развитием и использованием

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		информационных систем и технологий.
		Хорошо умеет применять нечёткую логику и
		нейронные сети для решения задач.
		Демонстрирует отличное владение навыками
		практического применения методов
		нечёткой логики и сетевого моделирования
		для решения задач.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: СУОС 1

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 44 до 60

«неудовлетворительно» / «незачтено» менее 44 балла

Компетенция	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Раздел 1. Нечёткие множества Входное тестирование	Проверяются знания по теории вероятностей и математической статистике, логике, математике
ПК.1 способность применять базовые математические знания для решения задач, связанных с развитием и использованием информационных систем и технологий, включая моделирование процессов и систем	Раздел 2. Нечёткие величины и нечёткая оптимизация Защищаемое контрольное мероприятие	Знать понятие нечёткого множества, нечёткой и лингвистической переменных. Уметь проводить операции
ПК.1 способность применять базовые математические знания для решения задач, связанных с развитием и использованием информационных систем и технологий, включая моделирование процессов и систем	Раздел 3. Нечёткая логика Защищаемое контрольное мероприятие	Знать нечёткие и лингвистические переменные, лингвистическую переменную истинности. Уметь делать нечёткий логический вывод.

Компетенция	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ПК.1 способность применять базовые математические знания для решения задач, связанных с развитием и использованием информационных систем и технологий, включая моделирование процессов и систем	Раздел 8. Динамические нейросетевые модели Итоговое контрольное мероприятие	Знать основные понятия из теории искусственных нейронных сетей. Основные архитектуры нейросетей. Уметь применять методы классификации обучения с учителем и без учителя.

Спецификация мероприятий текущего контроля

Раздел 1. Нечёткие множества

Продолжительность проведения мероприятия промежуточной аттестации: **1 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **0**

Проходной балл: 0

Показатели оценивания	
Знает и умеет использовать основные понятия и методы теории вероятностей и	4
математической статистики: вероятность, случайная величина, статистика, точечные и	
интервальные оценки и т.п.	
Знает и умеет использовать основные понятия логики: посылка, следствие, логический	3
вывод, высказывание, предикат и т.п.	
Знает и умеет использовать основные понятия и методы математического анализа,	3
линейной алгебры. Умеет решать уравнения. Знает условия существования экстремума	
гладкой функции.	

Раздел 2. Нечёткие величины и нечёткая оптимизация

Продолжительность проведения мероприятия промежуточной аттестации: **1 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **40**

Проходной балл: 17

Показатели оценивания	Баллы
Знает основные понятия теории нечётких множеств. Знает способы задания функции	10
принадлежности нечёткого множества.	
Знает варианты задач нечёткой оптимизации.	10
Умеет работать с нечёткими отношениями.	10
Умеет работать с нечёткими величинами. Знает способы сравнения нечётких величин.	10

Раздел 3. Нечёткая логика

Продолжительность проведения мероприятия промежуточной аттестации: **4 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **40** Проходной балл: **17**

Показатели оценивания	Баллы
Знает понятия нечёткой и лингвистической переменной. Умеет определять	10
лингвистические переменные с нечёткими значениями.	
Умеет строить системы нечёткого логического вывода.	10
Умеет использовать правила нечёткого логического вывода. Умеет выполнять	
дефаззификацию полученного результата.	
Знает понятие нечёткой переменной истинности. Умеет определять нечёткие переменные,	10
использующие понятия "не определено" и "неизвестно".	

Раздел 8. Динамические нейросетевые модели

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	
Знает понятие искусственного нейрона, многослойного персептрон. Многослойная	5
нейросеть как универсальный аппроксиматор.	
Знание принципов использования искусственных нейросетей для решения задач регрессии,	5
классификации и кластеризации. Понятие о нейронечётких системах.	
Знание понятия самоорганизующихся нейронных сетей.	5
Знание понятий сети на основе радиальных базисных функций и машины опорных	5
векторов.	