МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра информационных систем и математических методов в экономике

Авторы-составители: **Бячков Андрей Борисович Шульц Дмитрий Николаевич**

Рабочая программа дисциплины

СИСТЕМНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Код УМК 88021

Утверждено Протокол №9 от «21» мая 2019 г.

1. Наименование дисциплины

Системно-динамическое моделирование

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: **09.03.02** Информационные системы и технологии направленность Информационные системы и технологии в экономике

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Системно-динамическое моделирование у обучающегося должны быть сформированы следующие компетенции:

09.03.02 Информационные системы и технологии (направленность : Информационные системы и технологии в экономике)

ОПК.2 способность создавать, анализировать, реализовывать математические и информационные модели с применением современных вычислительных систем

ПК.2 способность к проектированию информационных систем с использованием средств автоматизированного проектирования

4. Объем и содержание дисциплины

Направления подготовки	09.03.02 Информационные системы и технологии
	(направленность: Информационные системы и технологии в
	экономике)
форма обучения	очная
№№ триместров,	7
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	3
Объем дисциплины (ак.час.)	108
Контактная работа с	42
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	14
занятий	
Проведение практических	14
занятий, семинаров	
Проведение лабораторных	14
работ, занятий по	
иностранному языку	
Самостоятельная работа	66
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Защищаемое контрольное мероприятие (1)
	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (1)
Формы промежуточной	Зачет (7 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Системно-динамическое моделирование

Сегодня имитационное моделирование является эффективным, и зачастую, единственным методом исследования и решения сложных управленческих проблем. В сфере управления имитационное моделирование применяется в широчайшем диапазоне — от операционного и производственного менеджмента — до стратегического, в управленческом и ИТ-консалтинге. Решения на основе имитационного моделирования востребованы в отраслевых проектах, государственном и территориальном управлении.

Мировой рынок ИТ-индустрии предлагает высокотехнологичные коммерческие симуляторы, которые под силу освоить и применять как ТОР-менеджерам, так и аналитикам консалтинговых и ИТ-компаний. В ИТ-индустрии имитационное моделирование начинает применяться в информационных бизнес-системах, от систем планирования в ERP, SCM, APS-системах, инструментах анализа и оптимизации в системах моделирования бизнес-процессов, управления цепями поставок и многих других, - до методов сценарного планирования в системах поддержки принятия решений (DSS, EIS) и системах управления эффективностью бизнеса (BPM), включая современное цифровое производство в PLM-системах.

В СППР для органов государственного управления имитационная модель объекта управления выступает как наиболее ценное звено процесса принятия решений, с помощью которой осуществляется:

- системное моделирование социально-экономического развития территорий на основе комплекса взаимосвязанных имитационных и оптимизационных моделей;
- информационно-аналитическая поддержка процесса принятия управленческих решений, включающая выполнение многовариантных расчетов сценарного и целевого типа социально-экономического развития регионов и оценку последствий принятия решения.

Для приобретения слушателями необходимых компетенций Программа предусматривает изучение широкого спектра вопросов – от изучения современных парадигм имитационного моделирования: дискретного процессно-событийного подхода, системной динамики, агентного моделирования; - до практических основ создания имитационных моделей в современных средах разработки моделей, и применения их в широкой сфере экономических приложений.

В ходе обучения слушатели осваивают методологию и технологии системного моделирования, наиболее популярные парадигмы (процессный подход, системная динамика, агентное моделирование), а также осуществляют комплексное применение полученных знаний по моделированию сложных систем, современным инструментальным средствам автоматизации моделирования, методам математической статистики, сценарного планирования и принятия решений при исследовании социально-экономических систем и управлении социально-экономическим развитием стран и территорий.

Практические занятия имеют целью закрепление теоретических основ дисциплины и приобретение практических навыков по освоению современных технологий автоматизации моделирования, разработке и применению имитационных моделей в широком спектре задач государственного и муниципального управления.

В процессе обучения проводятся учебные тренинги с целью освоения работы в среде современных коммерческих симуляторов и их применения при моделировании и исследовании разнообразных экономических систем и управленческих ситуаций.

Прикладные аспекты имитационного моделирования изучаются с использованием демонстрационно-обучающихся комплексов, а также кейсов и шаблонов по рассматриваемым предметным областям и проблемным ситуациям.

Самостоятельная работа связана с освоением инструментальных возможностей системы моделирования, анализом проблематики, а также выполнением проекта по созданию системно-динамической модели социально-экономических системы в выбранной предметной области.

Раздел 1. Метод имитационного моделирования

Тема 1. Краткий экскурс в системный анализ. Понятие компьютерного моделирования.

Краткий экскурс в системный анализ. Понятие компьютерного моделирования Свойства сложных систем. Сложная система, как объект моделирования. Прикладной системный анализ – методология исследования сложных систем. Определение модели. Общая классификация основных видов моделирования. Компьютерное моделирование. Метод имитационного моделирования. Процедурно-технологическая схема построения и исследования моделей сложных систем. Основные понятия моделирования (объект и цель моделирования, требования к моделям, знаковые модели и вид их описания, метод исследования). Отличительные особенности моделей различных классов.

Тема 2. Сущность метода имитационного моделирования.

Сущность метода имитационного моделирования

Метод имитационного моделирования и его особенности. Статическое и динамическое представление моделируемой системы.

Понятие о модельном времени. Механизм продвижения модельного времени. Дискретные и непрерывные имитационные модели.

Моделирующий алгоритм. Имитационная модель.

Проблемы и задачи стратегического и тактического планирования имитационного эксперимента.

Направленный вычислительный эксперимент на имитационной модели.

Общая технологическая схема имитационного моделирования.

Возможности, область применения имитационного моделирования.

Тема 3. Базовые концепции структуризации и формализации имитационных систем.

Базовые концепции структуризации и формализации имитационных систем

Методологические подходы к построению дискретных имитационных моделей. События, действия, процессы.

Содержание базовой концепции структуризации процессно-(транзактно)- ориентированных дискретных систем моделирования. Агрегативные модели: Кусочно-линейный агрегат, Схема сопряжения.

Агрегативная система. Оценка агрегативных систем как моделей сложных систем. Примеры построения агрегативных моделей. Сетевые парадигмы. Сети Петри и их расширения.

Модели системной динамики: Общая структура моделей системной динамики. Содержание базовой концепции структуризации. Основные понятия. Потоковая стратификация. Диаграммы причинно-следственных связей и потоковые диаграммы моделей. Основные этапы технологии системной динамики.

Агентное моделирование. Агентный подход: новая парадигма и инновационные инструменты компьютерного моделирования. ABMS: базовая концепция, принципы и логика построения многоагентных компьютерных моделей. Понятие агента и его характеристики (атрибуты, правила поведения, память, ресурсы, правила принятия решений, эволюция и обучение). «Возникающее» поведение как результат взаимодействия элементов сложной системы между собой и внешней средой. Агенты обучающиеся и оптимизирующие свое поведение. Особенности программной реализации агентных моделей и поддерживающие среды компьютерного моделирования. Основы практического подхода по созданию мнгоагентных моделей в инструментальной среде AnyLogic. Стейчарты.

Тема 4. Технологические этапы создания и использования имитационных моделей.

Технологические этапы создания и использования имитационных моделей

Основные этапы имитационного моделирования. Общая технологическая схема.

Формулировка проблемы, определение целей моделирования. Системный подход к решению проблем. Разработка концептуальной модели объекта моделирования. Построение концептуальных моделей сложных систем. Элементы, параметры и переменные модели, функции критерия. Анализ (декомпозиция) и синтез (композиция) сложной системы. Границы системы, уровень детализации. Генерирование альтернатив; Формализация имитационной модели; Программирование имитационной модели; Сбор и анализ исходных данных; Испытание и исследование свойств имитационной модели; Направленный вычислительный эксперимент на имитационной модели; Анализ результатов моделирования и принятие решений.

Тема 5. Испытание и исследование свойств имитационной модели.

Испытание и исследование свойств имитационной модели

Комплексный подход к тестированию имитационной модели. Проверка адекватности модели. Верификация имитационной модели. Оценка точности результатов моделирования. Оценка устойчивости результатов моделирования. Анализ чувствительности имитационной модели.

Тема 6. Технология постановки и проведения направленного вычислительного эксперимента на имитационной модели.

Технология постановки и проведения направленного вычислительного эксперимента на имитационной модели

Направленный вычислительный эксперимент на имитационной модели и его содержание. Основные цели и типы вычислительных экспериментов в имитационном моделировании.

Основы теории планирования экспериментов: основные понятия. Основные классы планов, применяемые в вычислительном эксперименте. Последовательное планирование машинного эксперимента. Методология анализа поверхности отклика. Тактическое планирование машинного эксперимента.

Математические методы и вычислительные процедуры принятия решений в имитационном исследовании. Сценарное планирование.

Раздел 3. Инструменты имитационного моделирования

Тема 7. Инструментальные средства автоматизации моделирования.

Инструментальные средства автоматизации моделирования

Назначение языков и систем моделирования. Классификация языков и систем моделирования, их основные характеристики.

Технологические возможности современных коммерческих симуляторов. Высокотехнологичный симулятор нового поколения AnyLogic и его инструментальные возможности.

Развитие технологии системного моделирования. Современные тенденции в имитационном моделировании.

Выбор системы моделирования.

Раздел 4. Прикладные аспекты имитационного моделирования

Тема 8. Наиболее существенные приложения

Наиболее существенные приложения дискретного имитационного моделирования Моделирование систем массового обслуживания общего типа.

Наиболее существенные приложения дискретного имитационного моделирования в операционном и производственном менеджменте, логистике. Имитационное моделирование бизнес-процессов. Управление цепочками поставок: типичная структура логистической цепи и ее стохастическая сеть. Основные задачи проектирования логистической сети. Моделирование деятельности цепи поставок на стратегическом, такти¬ческом и операционном уровне. Комплексный подход к постановке и решению задачи оптимизации цепи поставок. Проектирование инфраструктуры логистических и распределительных центров. Моделирование транспортных систем.

Цифровое производство и цифровые модели: имитационные и графические VR-модели в рамках концепции e-Manufacturing.

Тема 9. Наиболее существенные приложения системной динамики

Историческое развитие основополагающих проектов. Дж. Форрестер и его фундаментальные работы: «Индустриальная динамика», «Динамика развития города», «Мировая динамика». Динамика предприятия. Фундаментальная работа Дж. Форрестер «Индустриальная динамика»: Системно-динамическая модель предприятия: структура, базовые потоки динамической модели предприятия. Механизмы корпоративного роста в работах Стермана. Стратегическая архитектура и Теория динамической стратегии по Уоррену. Динамическая система сбалансированных показателей.

Тема 10. Многоагентное имитационное моделирование и экономика поведения.

Многоагентное имитационное моделирование и экономика поведения.

Практическое применение много-агентных моделей и систем в сфере экономики и управления. Потребительские рынки и модели поведения клиентов.

Агент-ориентированные модели в финансовой сфере. Ограниченно рациональные агенты, агенты обучающиеся и оптимизирующие свое поведение. Агентная модель фондового рынка (структура экономического окружения, правила поведения агентов, механизмы формирования цены и трейдинговые поведения агентов.

Приложения агентного моделирования в социальных системах. Поведение человека и общество.

Тема 11. Высокие технологии и решения имитационного моделирования

Высокие технологии и решения имитационного моделирования и их применение в системах поддержки принятия решений

Формирование стратегии в системах управления эффективностью бизнеса. Сценарное планирование и динамический компьютерный сценарный анализ в процедурах и системах поддержки принятия решений. Системное моделирование региональных процессов. Сценарное планирование на основе обобщенной интерактивной имитационной модели региона (территории).

Системы принятия решений для первых лиц (EIS). Ситуационные центры и комнаты. Особенности экспертно-аналитической работы с применением методов и моделей системной динамики.

Цифровое производство в PLM-системах, промышленный симулятор четвертого поколения eM-Plant. Цифровые модели на основе решений Siemens Technomatix (eM-Plant).

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

1. Алексеев, Г. В. Численное экономико-математическое моделирование и оптимизация : учебное пособие / Г. В. Алексеев, И. И. Холявин. — 2-е изд. — Саратов : Вузовское образование, 2019. — 195 с. — ISBN 978-5-4487-0451-2. — Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/79692

Дополнительная:

- 1. Сидоренко В. Н. Системная динамика: Учеб. пособие для вузов/Моск. ун-т.-М.: ТЕИС, 1998, ISBN 5-7218-0135-2.-205.-Библиогр.: с.179-188
- 2. Дрогобыцкий И. Н. Системный анализ в экономике:учебное пособие для студентов вузов/И. Н. Дрогобыцкий.-Москва:Финансы и статистика,2009, ISBN 978-5-279-03242-6.-512.-Библиогр.: с. 498-501

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

https://www.anylogic.ru/use-of-simulation/system-dynamics/ Системная динамика в Anylogic https://habr.com/ru/post/349072/ Введение в моделирование

http://simulation.su/uploads/files/default/2014-volkomorova-misnikova.pdf Пример системнодинамического моделирования

https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%BD%D0%B0%D1%8F_%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0Другое название

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине Системно-динамическое моделирование предполагает использование следующего программного обеспечения и информационных справочных систем:

- презентационные материалы (слайды по темам лекционных и практических занятий);
- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательную среду университета. Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения:
- 1. пакеты AnyLogic (бесплатные версии, https://www.anylogic.ru/downloads/)
- 2. GPSS (бесплатные студенческие версии, https://gpss-world-student-version.software.informer.com/download/).

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Материально-техническая база обеспечивается наличием:

- 1. Лекционные занятия аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.
- 2. Занятий семинарского типа (практические занятия) аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.
- 3. Лабораторные занятия Компьютерный класс, оснащенный персональными ЭВМ и соответствующим программным обеспечением. Состав оборудования определен в Паспорте компьютерного класса.
- 4. Самостоятельная работа аудитория для самостоятельной работы, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченная доступом в электронную информационно-образовательную среду университета. Помещения Научной библиотеки ПГНИУ.

- 5. Текущий контроль и промежуточная аттестация аудитория, оснащенная меловой (и) или маркерной доской.
- 6. Индивидуальные и групповые консультации аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской или аудитория, оснащенная меловой (и) или маркерной доской.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Системно-динамическое моделирование

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ОПК.2	Способность создавать,	Неудовлетворител
способность создавать,	анализировать, реализовывать	Обучающийся не способен создавать,
анализировать,	математические и	анализировать, реализовывать
реализовывать	информационные модели с	математические и информационные модели
математические и	применением системно-	с применением системно-динамического
информационные	динамического моделирования.	моделирования.
модели с применением	Знать математические и	Знаний и умений не достаточно для
современных	информационные модели,	продолжения обучения.
вычислительных систем	уметь создавать, анализировать,	Удовлетворительн
	реализовывать математические	Обучающийся способен создавать,
	и информационные модели,	анализировать, реализовывать
	владеть современными	математические и информационные модели
	вычислительными системами.	с применением системно-динамического
		моделирования под руководством
		наставника.
		Знаний и умений не достаточно для
		продолжения обучения.
		Хорошо
		Обучающийся способен создавать,
		анализировать, реализовывать
		математические и информационные модели
		с применением системно-динамического
		моделирования в стандартных ситуациях.
		Отлично
		Обучающийся способен создавать,
		анализировать, реализовывать
		математические и информационные модели
		с применением системно-динамического
		моделирования, в том числе в нестандартных
	-	ситуациях.
ПК.2	Способность к проектированию	Неудовлетворител
способность к	информационных систем с	Обучающийся не может использовать
проектированию	использованием средств	средства системно-динамического
информационных	системно-динамического	моделирования при проектировании
систем с	моделирования.	информационных систем в экономике.
использованием средств		Знаний и умений не достаточно для
автоматизированного	проектирования	продолжения обучения.

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
проектирования	информационных систем,	Удовлетворительн
	уметь применять системно-	Обучающийся может использовать средства
	динамическое моделирование	системно-динамического моделирования при
	для проектирования	проектировании информационных систем в
	информационных систем.	экономике с помощью наставника.
		Знаний и умений достаточно для
		продолжения обучения.
		Хорошо
		Обучающийся самостоятельно использует
		средства системно-динамического
		моделирования при проектировании
		информационных систем в экономике.
		Отлично
		Обучающийся самостоятельно и уверенно
		использует средства системно-
		динамического моделирования при
		проектировании информационных систем в
		экономике.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: СУОС

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 42 до 60

«неудовлетворительно» / «незачтено» менее 42 балла

Компетенция	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Тема 1. Краткий экскурс в системный анализ. Понятие компьютерного моделирования. Входное тестирование	Проверяются знания по дисциплинам: статистика, математика и эконометрика
ПК.2 способность к проектированию информационных систем с использованием средств автоматизированного проектирования ОПК.2 способность создавать, анализировать, реализовывать математические и информационные модели с применением современных вычислительных систем	Тема 7. Инструментальные средства автоматизации моделирования. Письменное контрольное мероприятие	Контролируются элементы теории двух первых разделов "Базовые концепции и технология иммитационного моделирования". Опрос ведется по билетам, содержащим три вопроса. Список вопросов в присоединенном файле.

Компетенция	Мероприятие	Контролируемые элементы
	текущего контроля	результатов обучения
ПК.2	Тема 9. Наиболее	Реализация комплексного применения
способность к проектированию	существенные приложения	полученных знаний при исследовании
информационных систем с	системной динамики	социально-экономических систем и
использованием средств	Защищаемое контрольное	управлении социально-экономическим
автоматизированного	мероприятие	развитием стран и территорий.
проектирования		Обучающийся выполняет проект по
ОПК.2		заданной теме (возможные темы
способность создавать,		·
анализировать, реализовывать		представлены в загруженном файле).
математические и		
информационные модели с		
применением современных		
вычислительных систем		
ПК.2	Тема 11. Высокие	Теоретические положения по всему
способность к проектированию	технологии и решения	материалу курса. Опрос ведется по
информационных систем с	имитационного	билетам, содержащим три вопроса.
использованием средств	моделирования	Список вопросов в присоединенном
автоматизированного	Итоговое контрольное	файле.
проектирования	мероприятие	
ОПК.2		
способность создавать,		
анализировать, реализовывать		
математические и		
информационные модели с		
применением современных		
вычислительных систем		

Спецификация мероприятий текущего контроля

Тема 1. Краткий экскурс в системный анализ. Понятие компьютерного моделирования.

Продолжительность проведения мероприятия промежуточной аттестации: **.5 часа** Условия проведения мероприятия: **в часы самостоятельной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 0

Проходной балл: 0

Показатели оценивания	Баллы
Верно решенное задание(максимальный балл)	20
Верно решенное задание(проходной балл)	9
Верно решенное задание(минимальный балл)	2

Тема 7. Инструментальные средства автоматизации моделирования.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 12.5

Показатели оценивания	Баллы
Полный и правильный ответ на один вопрос в письменной форме. Обучающийся свободно	10
отвечает на дополнительные вопросы по теме.	
Полный и правильный ответ на один вопрос в письменной форме. Обучающийся отвечает	8
на большинство дополнительных вопросов по теме.	
Не полный, но правильный ответ на один вопрос в письменной форме. Обучающийся	6
затрудняется при ответе на большинство дополнительных вопросов по теме.	
Ответ в письменной форме на один вопрос содержит минимальные знания . Обучающийся	4
затрудняется отвечать на дополнительные вопросы по теме вопроса	

Тема 9. Наиболее существенные приложения системной динамики

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 12.5

Показатели оценивания	Баллы
Обучающийся выполнил проект в полном объеме. Самостоятельно выполнил все этапы	30
математического моделирования.Правильно применил технологии	
системно-динамического моделирования к конкретной задаче. Реализовал компьютерную	
модель.Дал все экономические интерпретации полученным результатам.	
Обучающийся не выполнил проект в полном объеме.Проект выполнен при значительном	12
объеме помощи со стороны преподавателя. Компьютерная модель реализована, работает с	
оговорками. Экономическая интерпретация полученных результатов слабая.	

Тема 11. Высокие технологии и решения имитационного моделирования

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 16.5

Показатели оценивания	Баллы
Полный и правильный ответ на один вопрос в письменной форме. Обучающийся свободно	10
отвечает на дополнительные вопросы по теме.	
Полный и правильный ответ на один вопрос в письменной форме. Обучающийся отвечает	8
на большинство дополнительных вопросов по теме.	
Не полный, но правильный ответ на один вопрос в письменной форме. Обучающийся	6
затрудняется при ответе на большинство дополнительных вопросов по теме.	
Ответ в письменной форме на один вопрос содержит минимальные знания . Обучающийся	4
затрудняется отвечать на дополнительные вопросы по теме вопроса.	