МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра метеорологии и охраны атмосферы

Авторы-составители: Шкляев Владимир Александрович

Рабочая программа дисциплины

ЧИСЛЕННЫЕ МЕТОДЫ АНАЛИЗА И ПРОГНОЗА ПОГОДЫ

Код УМК 63471

Утверждено Протокол №7 от «12» мая 2020 г.

1. Наименование дисциплины

Численные методы анализа и прогноза погоды

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 05.03.03 Картография и геоинформатика

направленность Геоинформатика

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Численные методы анализа и прогноза погоды** у обучающегося должны быть сформированы следующие компетенции:

05.03.03 Картография и геоинформатика (направленность : Геоинформатика)

ПК.10 уметь использовать инфраструктуры пространственных данных и геопорталы, методы и технологии обработки пространственной информации из различных источников для решения профессиональных задач

4. Объем и содержание дисциплины

Направления подготовки	05.03.03 Картография и геоинформатика (направленность: Геоинформатика)
форма обучения	очная
№№ триместров,	10
выделенных для изучения дисциплины	
Объем дисциплины (з.е.)	3
Объем дисциплины (ак.час.)	108
Контактная работа с	42
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	14
занятий	
Проведение практических	0
занятий, семинаров	
Проведение лабораторных	28
работ, занятий по	
иностранному языку	
Самостоятельная работа	66
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Защищаемое контрольное мероприятие (1)
	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (3)
Формы промежуточной	Экзамен (10 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Численные методы анализа и прогноза погоды. Первый семестр

Дисциплина «Численные методы анализа и прогноза погоды» входит в вариативную часть профессионального цикла подготовки студентов по направлению «бакалавр гидрометеорологии». Дисциплина нацелена на формирование профессиональных компетенций (ПКВ.15 владеет теоретическими знаниями численных методов анализа и прогнозирования погоды) выпускника. В дисциплине рассматриваются этапы разработки методов гидродинамических прогнозов погоды, дается характеристика разностных и спектральных методов, рассматриваются современные методы численного прогноза погоды, разработанные в прогностических центрах разных странах. Программой дисциплины предусмотрены следующие виды контроля: входной контроль в форме устного опроса, рубежный контроль в форме устного опроса, защиты лабораторных работ, контроля самостоятельной работы в письменной форме. Аттестация по усвоению содержания дисциплин проводится в форме экзамена. Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа. Программой дисциплины предусмотрены лекционные (24 часа), лабораторные (32 часа) занятия и 88 часов самостоятельной работы студента.

1. Уравнения гидротермодинамики, используемые в моделях прогноза погоды.

Метеорологические и гидродинамические параметры атмосферы. Многомасштабность атмосферных движений и их классификация. Погодообразующие движения и метеорологические шумы. Постановка задачи гидродинамического прогноза. Принципы построения прогностических моделей. Уравнения гидротермодинамики атмосферы в различных системах координат и их особенности

2. Конечно-разностные методы, используемые в моделях численного прогноза погоды Метод сеток. Конечно-разностная аппроксимация производных. Конечно-разностные схемы. Начальные условия. Боковые граничные условия по горизонтальным координатам. Граничные условия по вертикали. Метод шагов по времени. Схемы численного интегрирования по времени. Сходимость численного решения. Устойчивость конечно-разностных схем. Анализ вычислительной устойчивости конечно-разностных схем

3. Прогностические модели численного прогноза погоды

Уравнение вихря скорости в квазигеострофическом приближении. Начальные и граничные условия. Сеточный метод решения уравнения модели. Бароклинная квазигеострофическая модель. Прогноз полей температуры и вертикальных токов. Уравнение баланса поля массы и поля движения. Интегральные инварианты баротропной соленоидальной модели

4. Параметризация процессов подсеточного масштаба

Квазистатическая система полных уравнений гидротермодинамики в адиабатическом приближении. Начальные и граничные условия.

Методы интегрирования (на примере линейного одномерного уравнения адвекции). Исследование устойчивости численных схем (методом Неймана).

Стандартные операторы дифференцирования и сглаживания. Конечно-разностная аппроксимация полных уравнений на расшатанных сетках.

Баротропная модель. Явные, полунеявные и неявные методы интегрирования уравнений модели. Метод расщепления. Бароклинные квазистатические прогностические модели в изобарической и в сигма системах координат.

5. Современные модели численного прогноза погоды

Введение в спектральные методы интегрирования атмосферных моделей.

Методы решения прогностических уравнений с помощью рядов по базисным функциям. Спектральная форма уравнений гидротермодинамики атмосферы.

Принципиальная схема прогноза атмосферных полей на основе уравнении гидротермодинамики в спектральной форме

6. Оперативные прогностические модели краткосрочного и среднесрочного прогноза.

Применение оперативных прогностических моделей атмосферы в службе погоды.

Глобальные, полусферные и региональные модели краткосрочного и среднесрочного прогнозов, разработанные в Российской Федерации и в зарубежных службах погоды на основе конечно-разностных и спектральных подходов.

Статистические оценки качества гидродинамических прогнозов. Статистическая интерпретация результатов крупномасштабных гидродинамических прогнозов в терминах локальной погоды

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Шевелев В. Я. Практическая метеорология = Practical meteorology:Учебное пособие/Шевелев В. Я..-Новороссийск:Государственный морской университет имени адмирала Ф.Ф. Ушакова,2015.-157. http://www.iprbookshop.ru/64855.html
- 2. Чичасов Г. Н. Численные методы обработки и анализа гидрометеорологической информации:учебное пособие для студентов вузов и слушателей ИПК по специальности "Метеорология" и "Гидрология"/Г. Н. Чичасов.-Москва,2013, ISBN 978-5-9902607-2-6.-235.-Библиогр.: с. 211-213

Дополнительная:

- 1. Поморцева А. А. Синоптическая метеорология: практикум:учебное пособие для студентов, обучающихся по направлению подготовки бакалавров "Гидрометеорология"/А. А. Поморцева.-Пермь, 2014, ISBN 978-5-7944-2424-9,-1. http://k.psu.ru/library/node/306514
- 2. Белов Павел Николаевич, Борисенков, Панин Б. Д. Численные методы прогноза погоды: Учеб./Науч.ред.В.П.Садоков.-Л.:Гидрометеоиздат, 1989, ISBN 5-286-00148-3.-376.
- 3. Гордеева С. М. Практикум по дисциплине "Статистические методы обработки и анализа гидрометеорологической информации"/Гордеева С. М..-Санкт-Петербург:Российский государственный гидрометеорологический университет, 2013.-74. http://www.iprbookshop.ru/12518
- 4. Калинин Н. А.,Свиязов Е. М. Динамическая метеорология:практикум: учебное пособие для студентов, обучающихся по направлению подготовки бакалавров "Гидрометеорология"/Н. А. Калинин, Е. М. Свиязов.-Пермь:Пермский государственный национальный исследовательский университет, 2017, ISBN 978-5-7944-2934-3.-1.-Библиогр.: с. 74-75 https://elis.psu.ru/node/440388

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://ipk.meteorf.ru/index.php?option=com_content&view=article&id=187&Itemid=75 Учебные материалы

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Численные методы анализа и прогноза погоды** предполагает использование следующего программного обеспечения и информационных справочных систем:

- 1. Презентационные материалы (слайды по темам лекционных и практических занятий)
- 2. Доступ в режиме on-line в Электронную библиотечную систему (ЭБС)
- 3. Доступ в электронную информационно-образовательной среду университета
- 4. Офисный пакет приложений

Дисциплина не предусматривает использования специального программного обеспечения.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

1. Лекционные занятия

Аудитория, оснащённая презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

2. Лабораторные занятия

Лаборатория кафедры метеорологии и охраны атмосферы, оснащённая специализированным оборудованием. Состав оборудования определён в Паспорте лаборатории.

3. Групповые (индивидуальные) консультации

Аудитория, оснащённая презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

4. Текущий контроль и промежуточная аттестация

Аудитория, оснащённая презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

5. Самостоятельная работа

Аудитория для самостоятельной работы, оснащённая компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченный доступом в электронную информационнообразовательную среду университета.

Помещения Научной библиотеки ПГНИУ.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Численные методы анализа и прогноза погоды

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ПК.10	Знать принципы построения	Неудовлетворител
уметь использовать	разностных схем. Уметь	Не способен выводить основные уравнения и
инфраструктуры	объяснять отличие	анализировать их и не может выделить
пространственных	центральных, направленных	главные и второстепенные слагаемые. Не
данных и геопорталы,	разностей, построение схем на	может записывать уравнения в различных
методы и технологии	сетках спуска. Понимать смысл	координатных системах. Не знает какие
обработки	устойчивости и сходимости	разностные схемы применяются в моделях
пространственной	схем. Уметь объяснять	численного прогноза. Не знает отличия
информации из	особенности применения схем в	квазигеострофических, основанных на
различных источников	различных уравнениях.	полной системе уравнений, спектральных
для решения	Знать различные классы	моделей. Не знает, какие процессы
профессиональных	гидродинамических моделей	необходимо параметризовать в моделях
задач	прогноза погоды:	прогнозов погоды. Не знает основных
	квазигеострофических,	характеристик современных моделей
	основанных на полной системе	численного прогноза погоды и особенностей
	уравнений, спектральных. Знать	их применения. Не может объяснить какие
	особенности применения этих	исходные уравнения лежат в основе
	моделей.	конкретной модели.
	Знать процессы, требующие	
	параметризации в моделях	Удовлетворительн
	прогнозов: потоков лучистой	Способен выводить основные уравнения и
	энергии, турбулентной	анализирует их, но не может выделить
	диффузии, конденсации	главные и второстепенные слагаемые. Не
	водяного пара и образования	может записывать уравнения в различных
	облаков.	координатных системах. Знает принципы
	Знать основные характеристики	построения разностных схем, но не может
	современных моделей	объяснить особенности их применения для
	численного прогноза погоды и	пространственных и временных координат.
	особенностей их применения.	Путается в классах гидродинамических
		моделей прогноза погоды:
		квазигеострофических, основанных на
		полной системе уравнений, спектральных.
		Не знает особенностей применения этих
		моделей. Знание процессов, требующих
		параметризации в моделях прогнозов
		погоды, но не может оценить критерии
		параметризации. Знание основных

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Удовлетворительн характеристик современных моделей численного прогноза погоды и особенностей их применения. Не может объяснить какие исходные уравнения лежат в основе конкретной модели.
		Хорошо Способен выводить основные уравнения и анализирует их, но не может выделить главные и второстепенные слагаемые. Может записывать уравнения в различных координатных системах. Знает принципы построения разностных схем и может объяснить отличие центральных, направленных разностей, построение схем на сетках спуска, но не различает явные и неявные схемы. Может объяснить смысл устойчивости и сходимости схем. Знание различных классов гидродинамических моделей прогноза погоды: квазигеострофических, основанных на полной системе уравнений, спектральных. Не знает особенностей применения этих моделей. Знание процессов, требующих параметризации в моделях прогнозов: потоков лучистой энергии, турбулентной диффузии, конденсации водяного пара и образования облаков, но не может объяснить особенности применения схем параметризации. Знание основных характеристик современных моделей численного прогноза погоды и особенностей их применения. Может объяснить применения. Может объяснить применения. Может объяснить применения исходные уравнения, но не может преобразовать их для конкретной модели.
		Отлично Способен выводить основные уравнения. Анализирует слагаемые, входящие в уравнения. Может записывать уравнения в различных координатных системах. Знает принципы построения разностных схем и

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично может объяснить отличие центральных, направленных разностей, построение схем на сетках спуска. Различает явные и неявные схемы. Может объяснить смысл устойчивости и сходимости схем. Может объяснить особенности применения схем в различных уравнениях. Знание различных классов гидродинамических моделей прогноза погоды: квазигеострофических, основанных на полной системе уравнений, спектральных. Знание особенностей применения этих моделей. Знание процессов, требующих параметризации в моделях прогнозов: потоков лучистой энергии, турбулентной диффузии, конденсации водяного пара и образования облаков. Разбирается в моделях параметризации. Знание основных характеристик современных моделей численного прогноза погоды и особенностей их применения. Может объяснить применяемые исходные уравнения и преобразовать их для конкретной модели.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 48 до 60

«неудовлетворительно» / «незачтено» менее 48 балла

Компетенция	Мероприятие	Контролируемые элементы
	текущего контроля	результатов обучения
Входной контроль	1. Уравнения	Знание основных уравнений
	гидротермодинамики,	гидротермодинамики атмосферы и
	используемые в моделях	умение выполнять их анализ
	прогноза погоды.	
	Входное тестирование	
ПК.10	1. Уравнения	Умение выводить основные уравнения.
уметь использовать	гидротермодинамики,	Умение выполнять анализ слагаемых,
инфраструктуры	используемые в моделях	входящих в уравнения. Умение
пространственных данных и	прогноза погоды.	записывать уравнения в различных
геопорталы, методы и	Письменное контрольное	координатных системах
технологии обработки	мероприятие	
пространственной информации		
из различных источников для		
решения профессиональных		
задач		
ПК.10	2. Конечно-разностные	Знание принципов построения
уметь использовать	методы, используемые в	разностных схем. Умение объяснить
инфраструктуры	моделях численного	отличие центральных, направленных
пространственных данных и	прогноза погоды	разностей, построение схем на сетках
геопорталы, методы и	Письменное контрольное	спуска. Понимание смысла
технологии обработки	мероприятие	устойчивости и сходимости схем.
пространственной информации		Умение объяснить особенности
из различных источников для		применения схем в различных
решения профессиональных		уравнениях.
задач		J F

Компетенция	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ПК.10 уметь использовать инфраструктуры пространственных данных и геопорталы, методы и технологии обработки пространственной информации из различных источников для решения профессиональных задач	3. Прогностические модели численного прогноза погоды Письменное контрольное мероприятие	Знание различных классов гидродинамических моделей прогноза погоды: квазигеострофических, основанных на полной системе уравнений, спектральных. Знание особенностей применения этих моделей.
ПК.10 уметь использовать инфраструктуры пространственных данных и геопорталы, методы и технологии обработки пространственной информации из различных источников для решения профессиональных задач	4. Параметризация процессов подсеточного масштаба Защищаемое контрольное мероприятие	Знание процессов, требующих параметризации в моделях прогнозов: потоков лучистой энергии, турбулентной диффузии, конденсации водяного пара и образования облаков.
ПК.10 уметь использовать инфраструктуры пространственных данных и геопорталы, методы и технологии обработки пространственной информации из различных источников для решения профессиональных задач	6. Оперативные прогностические модели краткосрочного и среднесрочного прогноза. Итоговое контрольное мероприятие	Знание основных характеристик современных моделей численного прогноза погоды и особенностей их применения.

Спецификация мероприятий текущего контроля

1. Уравнения гидротермодинамики, используемые в моделях прогноза погоды.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 0

Проходной балл: 0

Показатели оценивания	
Умение анализировать уравнения гидротермодинамики	3
Запись основных уравнений, рассмотренных в курсе "динамическая метеорология"	2

1. Уравнения гидротермодинамики, используемые в моделях прогноза погоды.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы самостоятельной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 25

Проходной балл: 12

Показатели оценивания	
Умение записывать уравнения в различных координатных системах	12
Умение выводить основные уравнения.	
Умение выполнять анализ слагаемых, входящих в уравнения.	5

2. Конечно-разностные методы, используемые в моделях численного прогноза погоды

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 25

Проходной балл: 12

Показатели оценивания	
Знание принципов построения разностных схем.	9
Умение объяснить особенности применения схем в различных уравнениях.	6
Понимание смысла устойчивости и сходимости схем.	6
Умение объяснить отличие центральных, направленных разностей, построение схем на	4
сетках спуска.	

3. Прогностические модели численного прогноза погоды

Продолжительность проведения мероприятия промежуточной аттестации: **1 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 15

Проходной балл: 7

Показатели оценивания	
Знание принципов построения гидродинамических моделей прогноза погоды, основанных на полной системе уравнений. Знание особенностей применения этих моделей.	5
Знание принципов построения квазигеострофических гидродинамических моделей прогноза давления. Знание особенностей применения этих моделей.	4
Знание особенностей применения спектральных гидродинамических моделей прогноза погоды.	3
Знание основ спектральных гидродинамических моделей прогноза погоды.	3

4. Параметризация процессов подсеточного масштаба

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 15

Проходной балл: 7

Показатели оценивания	Баллы
Знание процессов, требующих параметризации конденсации водяного пара и образования	5
облаков.в	

моделях прогнозов погоды.	
Знание процессов, требующих параметризации турбулентной диффузии.	4
Знание процессов требующих параметризации потоков лучистой энергии.	4
Владение термином параметризация физических процессов.	2

6. Оперативные прогностические модели краткосрочного и среднесрочного прогноза.

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 10

Показатели оценивания	Баллы
Знание основных уравнений, используемых в современных моделей численного прогноза	10
погоды и особенностей их применения.	
Знание особенностей реализации современных моделей численного прогноза погоды.	10