МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра картографии и геоинформатики

Авторы-составители: Шихов Андрей Николаевич

Рабочая программа дисциплины **АЭРОКОСМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЙ** Код УМК 93416

> Утверждено Протокол №6 от «23» июня 2021 г.

1. Наименование дисциплины

Аэрокосмические методы исследований

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в обязательную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 05.03.02 География направленность Общая география

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Аэрокосмические методы исследований у обучающегося должны быть сформированы следующие компетенции:

05.03.02 География (направленность : Общая география)

ОПК.5 Способен решать задачи профессиональной деятельности с использованием современных геоинформационных технологий

Индикаторы

ОПК.5.2 Применяет для решения типовых задач инструменты геоинформационных систем **ПК.4** Способен применять ГИС-технологии и программное обеспечение при решении профессиональных задач в сфере кадастрового учета

Индикаторы

- **ПК.4.1** Применяет ГИС-технологии и программное обеспечение при работе с пространственными данными
- **ПК.6** Способен применять современные технологии поиска, обработки, хранения и использования профессионально значимой информации, профессиональные средства визуализации и презентации исследований и проектных решений в градостроительной сфере

Индикаторы

ПК.6.1 Применяет современные технологии поиска и сбора, обработки и организации хранения, использования профессионально значимой информации

4. Объем и содержание дисциплины

Направления подготовки	05.03.02 География (направленность: Общая география)
форма обучения	очная
№№ триместров,	6
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	3
Объем дисциплины (ак.час.)	108
Контактная работа с	42
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	14
занятий	
Проведение практических	28
занятий, семинаров	
Самостоятельная работа	66
(ак.час.)	
Формы текущего контроля	Защищаемое контрольное мероприятие (2)
	Итоговое контрольное мероприятие (1)
Формы промежуточной аттестации	Экзамен (6 триместр)

5. Аннотированное описание содержания разделов и тем дисциплины

Аэрокосмические методы исследований

Дисциплина "Аэрокосмические методы исследований" нацелена на формирование профессиональных компетенций выпускника в области формирования знаний, умений и навыков по использованию современных методов и технологий дистанционного зондирования Земли (с упором на космические снимки) для решения научных и прикладных географических задач.

В рамках изучения дисциплины студенты получают базовые знания об источниках данных дистанционного зондирования Земли (ДЗЗ), технологиях их получения, форматах представления данных, методах визуального и автоматизированного дешифрирования снимков. Рассматривается современное состояние мирового фонда космических снимков, понятие о космическом мониторинге и наиболее значимые исследования Земли из Космоса

Введение. физические основы аэрокосмических методов, основные свойства космических снимков

Введение. Понятие о дистанционном зондировании Земли. Методы дистанционного зондирования, носители съемочной аппаратуры и сенсоры. Технологическая схема дистанционного зондирования Земли. Основные свойства аэрокосмических снимков: пространственное, временное, радиометрическое, спектральное разрешение, обзорность, сезон съемки. Классификации данных ДЗЗ из Космоса.

Понятие о дешифрировании снимков. Дешифровочные признаки природных и антропогенных объектов. Визуально-интерактивное дешифрирование.

Дешифрирование снимков. Визуально-интерактивное и автоматизированное дешифрирование. Виды и методы дешифрирования. Полевое и камеральное дешифрирование. Дешифровочные признаки: спектральные, геометрические, текстурные, контекстные, сезонные. Распознавание различных природных и антропогенных объектов. по снимкам. Дешифровочные признаки застройки, с/х угодий, снежно-ледовых поверхностей, лесной и нелесной растительности, нарушений лесного покрова, различных видов загрязнения природной среды.

Получение данных ДЗЗ из Космоса с открытых и коммерческих сервисов

Доступность данных ДЗЗ: открытые, коммерческие и закрытые данные. Основные источники открытых данных ДЗЗ: программы Landsat, Sentinel, MODIS, данные с метеорологических спутников. Сервисы для получения данных ДЗЗ через Интернет: EarthExplorer, LandViewer. Преимущества и недостатки различных сервисов. Практическая реализация работы с ними. Процедура заказа данных ДЗЗ с коммерческих спутников на примере каталога компании "СканЭкс".

Мировой фонд космических снимков: современное состояние, перспективы

Структура мирового фонда космических снимков.

История развития мирового фонда снимков. Снимки с разведывательных спутников. Фотосъемка из Космоса с помощью спутников (программа Ресурс-Ф) и орбитальных станций.

Снимки с геостационарных метеорологических спутников (программы METEOSAT, GOES, HIMAWARI).

Снимки с природно-ресурсных спутников. национальные программы космического мониторинга LANDSAT, SPOT, IRS, KOMPSAT, ALOS, Гаофэнь

Программы глобального космического мониторинга EOS, Copernicus. Спутниковые данные Sentinel 1, 2, 3 их особенности и области применения.

Снимки сверхвысокого разрешения (данные DIGITAL GLOBE, Pleiades).

Основные спутниковые данные в радиодиапазоне. TerraSar-X, Tandem-X, Cosmo-Skymed Современные тенденции развития мирового фонда снимков. Миниатюризация спутников. Данные как сервис. Компания Planet Labs (данные PlanetScope, Skysat). Особенности их применения

Фонд снимков с российских спутников.

Космический мониторинг. Исследования Земли из Космоса.

Понятие о космическом мониторинге. Глобальный, региональный, локальный мониторинг. Объекты мониторинга. Организация комплексного космического мониторинга на региональном уровне. Решение прикладных задач на основе данных ДЗЗ: оперативный мониторинг для задач сельскохозяйственной и лесной отрасли. Мониторинг опасных природных явлений (наводнений, лесных пожаров, ветровалов и др.). Мониторинг городской застройки. Аэрокосмические исследования геосфер. Программы глобального мониторинга состояния растительного покрова, атмосферы, гидросферы и криосферы. Мониторинг антропогенной трансформации геосистем. Глобальный мониторинг и оценка последствий стихийных бедствий.

Основы автоматизированного дешифрирования снимков, классификация изображений Понятие об автоматизированном дешифрировании космических снимков. Пространство спектральных признаков. Классификация изображений. Управляемая и неуправляемая классификация. Попиксельный и объектно-ориентированный подходы. Параметрические и непараметрические методы. Последовательность выполнения классификации снимка с обучением по методу максимального правдоподобия. Основные недостатки традиционных попиксельных методов классификации. Перспективные методы классификации.

Анализ изменений природных и антропогенных объектов по разновременным космическим снимкам

Основные области применения разновременных космических снимков. Создание мультивременных композитов. Одноканальное и многоканальное обнаружение изменений. Использование вегетационных индексов для обнаружения изменений по снимкам. Индексы NDVI, NDII. их преимущества и недостатки. Современные методы выявления изменений по разновременным снимкам. Выявление нарушений лесного покрова по разновременным данным ДЗЗ. Оценка состояния сельскохозяйственных земель по разновременным снимкам (включая выявление залежей и зарастающих угодий)

Подготовка к итоговому контрольному мероприятию

Примерный перечень вопросов к контрольному мероприятию

- 1. Классификация данных ДЗЗ из Космоса.
- 2. Основные свойства космических снимков: пространственное, спектральное, радиометрическое, временное разрешение, обзорность
- 3. Спектральные диапазоны съемки. Свойства спектральных каналов и их информативность. Комбинации спектральных каналов и их особенности
- 4. Дешифровочные признаки (спектральные, геометрические, текстурные, контекстные, сезонные). Визуальное (экспертное) дешифрирование.
- 5. Спектральные дешифровочные признаки. Особенности спектрального образа основных природных объектов (облачность, снежно-ледовые поверхности, вода, растительность, открытые грунты)
- 6. Уровни обработки данных ДЗЗ (Level0, Level1, Level2).
- 7. Понятие о пространстве спектральных признаков
- 8. Классификация данных ДЗЗ как способ автоматизированного дешифрирования. Объектно-ориентированный и попиксельный подходы. Виды классификации (управляемая и неуправляемая)
- 9. Неуправляемая классификация кластеризация (Izodata). Преимущества и недостатки
- 10. Управляемая классификация. Последовательность выполнения, преимущества и недостатки

- 11. Области применения разновременных снимков из Космоса, анализ изменений по снимкам.
- 12. История формирования мирового фонда снимков
- 13. Основные действующие программы космического мониторинга (LANDSAT, SPOT, IRS, ALOS)
- 14. Современные тенденции изменения мирового фонда снимков и способов получения данных.
- 15. Российский фонд снимков. Данные с космических аппаратов Роскосмоса.
- 16. Коммерческие и открытые данные ДЗЗ
- 17. Основные каталоги космических снимков: EarthExplorer, LandViewer
- 18. Получение космических снимков на коммерческой основе
- 19. Открытые цифровые модели рельефа: SRTM, Aster GDEM, Gtopo30, GMTED2010

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Тематическое дешифрирование и интерпретация космических снимков среднего и высокого пространственного разрешения: учебное пособие для студентов, обучающихся по основным образовательным программам высшего образования уровней бакалавриат и магистратура направления 05.00.03 Картография и геоинформатика/А. Н. Шихов [и др.].-Пермь:ПГНИУ,2020, ISBN 978-5-7944-3476-7.-191.-Библиогр.: с. 187-190 https://elis.psu.ru/node/642172
- 2. Трифонова, Т. А. Геоинформационные системы и дистанционное зондирование в экологических исследованиях : учебное пособие для вузов / Т. А. Трифонова, Н. В. Мищенко, А. Н. Краснощеков. Москва : Академический проект, 2020. 349 с. ISBN 978-5-8291-2999-6. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. https://www.iprbookshop.ru/110100

Дополнительная:

- 1. Лурье И. К. Геоинформационное картографирование. Методы геоинформатики и цифровой обработки космических снимков: учебник / И. К. Лурье. М.: КДУ, 2010. 425 с. : табл., ил. ISBN 978-5-98227-706-0. Текст : электронный // Электронно-библиотечная система БиблиоТех: [сайт]. https://bibliotech.psu.ru/Reader/Book/7103
- 2. Книжников Ю. Ф., Кравцова В. И., Тутубалина О. В. Аэрокосмические методы географических исследований: учебник для студентов вузов, обучающихся по направлению "География" и специальностям "География" и "Картография"/Ю. Ф. Книжников, В. И. Кравцова, О. В. Тутубалина.-Москва: Академия, 2011, ISBN 978-5-7695-6830-5.-410616.
- 3. Лозовая, С. Ю. Фотограмметрия и дистанционное зондирование территорий: практикум. Учебное пособие / С. Ю. Лозовая, Н. М. Лозовой, А. В. Прохоров. Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2012. 168 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/28415

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://gis-lab.info/. Сообщество специалистов в области ГИС и дистанционного зондирования Земли. https://eos.com/landviewer Каталог космических снимков с возможностями обработки данных в браузере

https://earthexplorer.usgs.gov/ Единый каталог космических снимков USGS

http://geomatica.ru/ Журнал "Геоматика"

http://zikj.ru/index.php/ru/ журнал "Земля из Космоса -наиболее эффективные решения"

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Аэрокосмические методы исследований** предполагает использование следующего программного обеспечения и информационных справочных систем: Презентационные материалы (слайды по темам лекционных и практических занятий) Доступ в режиме on-line в Электронную библиотечную систему (ЭБС) Доступ в электронную информационно-образовательной среду университета.

Лицензионный программный комплекс: ArcGIS Программный комплекс с открытым кодом Q-GIS, GRASS, SAGA, ILVIS, GDAL Архив открытых геоданных портала GIS-LAB.INFO.

Консультант Плюс [Электронный ресурс]: справочно-правовая система: база данных. – Доступ из сети ПГНИУ

Архивы кафедры картографии и геоинформатики и ГИС-центра ПГНИУ:

- Архив цифровых топографических карт масштаба 1:1000000, 1:500000, 1:200000, 1:100000 за 2002-2017 годы;
- Архив цифровых и печатных космических снимков (LandSat, SPOT, IRS, Sentinel-2) за 2007-2017 годы;
- Архив цифровых моделей рельефа и цифровых моделей местности;
- Архив периодической, учебной и технической литературы кафедры, в т.ч. электронные издания;
- Архив цифровых тематических электронных слоев баз пространственных данных;
- Архив печатной технической литературы по сопровождению лицензионных программных продуктов.

Разновременные космические снимки Landsat, Sentinel-2, полученные из открытых каталогов (https://earthexplorer.usgs.gov/), а также фрагменты снимков сверхвысокого разрешения с открытых картографических сервисов

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется: проектор, экран, компьютер/ноутбук с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для практических занятий: компьютерный класс, оснащенный персональными ЭВМ и соответствующим программным обеспечением.

Для групповых и индивидуальных консультаций требуется: проектор, экран, компьютер/ноутбук с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения текущего контроля и промежуточной аттестации требуется: проектор, экран, компьютер/ноутбук с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для самостоятельной работы: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченный доступом в электронную информационно-образовательную среду университета. Помещения Научной библиотеки ПГНИУ.

Беспилотный летательный аппарат.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Аэрокосмические методы исследований

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.5 Способен решать задачи профессиональной деятельности с использованием современных геоинформационных технологий

геоинформационных т		
Компетенция	Планируемые результаты	Критерии оценивания результатов
(индикатор)	обучения	обучения
ОПК.5.2	Знать: Основные виды	Неудовлетворител
Применяет для решения	съемочной аппаратуры для	Не знает основные виды съемочной
типовых задач	проведения космической	аппаратуры для проведения космической
инструменты	съемки, аэрофотосъемки и	съемки, аэрофотосъемки и съемки с БПЛА,
геоинформационных	съемки с БПЛА, физические	физические принципы устройства съемочной
систем	принципы устройства	аппаратуры; современные тенденции в
	съемочной аппаратуры;	развитии аппаратуры для аэрокосмических
	современные тенденции в	съемок.
	развитии аппаратуры для	Не умеет оценивать качество данных,
	аэрокосмических съемок.	полученных с различной съемочной
	Уметь: Оценивать качество	аппаратуры, в том числе новейшей (микро- и
	данных, полученных с	наноспутников); производить необходимое
	различной съемочной	обслуживание съемочной аппаратуры и
	аппаратуры, в том числе	носителей для проведения съемки с БПЛА
	новейшей (микро- и	Не владеет методами и алгоритмами оценки
	наноспутников); производить	качества данных аэрофото- и космических
	необходимое обслуживание	съемок на основе критериев геометрической
	съемочной аппаратуры и	точности, радиометрического разрешения и
	носителей для проведения	др.
	съемки с БПЛА Владеть:	
	методами и алгоритмами	Удовлетворительн
	оценки качества данных	Знает основные виды съемочной аппаратуры
	аэрофото- и космических	для проведения космической съемки,
	съемок на основе критериев	аэрофотосъемки и съемки с БПЛА, имеет
	геометрической точности,	общее представление о физических
	радиометрического разрешения	принципах устройства съемочной
	и др.	аппаратуры; современных тенденциях в
		развитии аппаратуры для аэрокосмических
		съемок.
		Демонстрирует частично успешные умения
		оценивать качество данных, полученных с
		различной съемочной аппаратуры, в том
		числе новейшей (микро- и наноспутников);
		производить необходимое обслуживание
		съемочной аппаратуры и носителей для
		проведения съемки с БПЛА Владеет

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Удовлетворительн некоторыми методами и алгоритмами оценки качества данных аэрофото- и космических съемок на основе критериев геометрической точности, радиометрического разрешения и др.
		Хорошо Знает основные виды съемочной аппаратуры для проведения космической съемки, аэрофотосъемки и съемки с БПЛА; хорошо ориентируется в физических принципах устройства съемочной аппаратуры; современных тенденциях в развитии аппаратуры для аэрокосмических съемок. Демонстрирует в целом успешные умения оценивать качество данных, полученных с различной съемочной аппаратуры, в том числе новейшей (микро- и наноспутников); производить необходимое обслуживание съемочной аппаратуры и носителей для проведения съемки с БПЛА В целом успешно владеет методами и алгоритмами оценки качества данных аэрофото- и космических съемок на основе критериев геометрической точности, радиометрического разрешения и др.
		Отлично Демонстрирует глубокие знания основных видов съемочной аппаратуры для проведения космической съемки, аэрофотосъемки и съемки с БПЛА, физических принципов устройства съемочной аппаратуры; современных тенденций в развитии аппаратуры для аэрокосмических съемок. Демонстрирует успешные умения оценивать качество данных, полученных с различной съемочной аппаратуры, в том числе новейшей (микро- и наноспутников); производить необходимое обслуживание съемочной аппаратуры и носителей для проведения съемки с БПЛА Свободно владеет методами и алгоритмами оценки качества данных аэрофото- и космических съемок на основе критериев геометрической

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		точности, радиометрического разрешения и
		др.

ПК.4 Способен применять ГИС-технологии и программное обеспечение при решении профессиональных задач в сфере кадастрового учета

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
·	•	·
ПК.4.1	Знать: основы геоинформатики,	Неудовлетворител
Применяет ГИС-	используемые программные и	Не знает теоретические основы обработки и
технологии и	технические средства	анализа пространственных данных;
программное	цифрового картографирования,	основные особенности открытых и
обеспечение при работе	дистанционного зондирования	коммерческих ГИС-пакетов
с пространственными	Земли и глобальной	Не способен построить логическую
данными	спутниковой навигации.	последовательность решения практических
	Уметь: использовать	задач с помощью ГИС-технологий.
	современные программные и	Не владеет современными ГИС-пакетами и
	технические средства для	технологиями пространственного анализа
	обработки данных	Удовлетворительн
	дистанционного зондирования	Имеет общее представление о современных
	и создавать на их основе	открытых и коммерческих ГИС-пакетах, их
	картографические материалы.	основных функциональных возможностях
	Владеть: современными	Способен строить логическую
	геоинформационными и веб-	последовательность операций и решать
	технологиями создания карт,	простые практические задачи средствами
	программным обеспечением в	ГИС-технологий.
	области картографии,	Владеет некоторыми инструментами
	геоинформатики и обработки	пространственного анализа в ГИС
	космических снимков.	Хорошо
		Хорошо ориентируется в функциональных
		возможностях современных ГИС-пакетов, и
		преимуществах и недостатках, но имеет
		пробелы в данной области
		В целом успешное, но содержащее
		отдельные пробелы умения строить
		логические последовательности решения
		практических задач средствами ГИС,
		производить обоснованный выбор
		программных средств
		В целом успешное, но содержащее
		отдельные пробелы владение современными
		программными средствами обработки,

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Хорошо
		конвертации, анализа пространственных данных и создания карт
		Отлично Свободно ориентируется в функциональных возможностях современных ГИС-пакетов и
		способен применять эти знания ан практике. Свободно владеет свободными и
		коммерческими ГИС-пакетами, различными технологиями подготовки данных и
		пространственного анализа

ПК.6
Способен применять современные технологии поиска, обработки, хранения и использования профессионально значимой информации, профессиональные средства визуализации и презентации исследований и проектных решений в градостроительной сфере

Компетенция	Планируемые результаты	Критерии оценивания результатов
(индикатор)	обучения	обучения
ПК.6.1	Знать: как использовать	Неудовлетворител
Применяет	материалы дистанционного	не способен к использованию материалов
современные	зондирования и	дистанционного зондирования и
технологии поиска и	геоинформационных	геоинформационных технологий при
сбора, обработки и	технологий при проведении	проведении мониторинга окружающей среды
организации хранения,	мониторинга окружающей	и для рационального природопользования
использования	среды и для рационального	Удовлетворительн
профессионально	природопользования	частично способен к использованию
значимой информации		материалов дистанционного зондирования и
	Уметь: использовать материалы	геоинформационных технологий при
	дистанционного зондирования	проведении мониторинга окружающей среды
	и геоинформационных	и для рационального природопользования
	технологий при проведении	Хорошо
	мониторинга окружающей	не в полной мере способен к использованию
	среды и для рационального	материалов дистанционного зондирования и
	природопользования на основе	геоинформационных технологий при
	методов и инструментов,	проведении мониторинга окружающей среды
	имеющихся в программе	и для рационального природопользования
	ArcGIS	Отлично
		в полной мере способен к использованию
	Владеть: навыками	материалов дистанционного зондирования и
	использования материалы	геоинформационных технологий при
	дистанционного зондирования	проведении мониторинга окружающей среды
	и геоинформационных	и для рационального природопользования
	технологий при проведении	
	мониторинга окружающей	

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
	среды и для рационального природопользования на основе методов и инструментов, имеющихся в программе ArcGIS	
	Владеть:	

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 50 до 60

«неудовлетворительно» / «незачтено» менее 50 балла

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.4.1	Понятие о	Студент осваивает методику
Применяет ГИС-технологии и	дешифрировании снимков.	визуально-интерактивного
программное обеспечение при	Дешифровочные признаки	дешифрирования разновременных
работе с пространственными	природных и	космических снимков, на примере
данными	антропогенных объектов.	выявления и оцифровки вырубок в
ОПК.5.2	Визуально-интерактивное	районе УНБ "Предуралье".Результат
Применяет для решения	дешифрирование.	практической работы должен
типовых задач инструменты геоинформационных систем	Защищаемое контрольное	представлять собой проект АгсМар,
ПК.6.1	мероприятие	содержащий три разновременных
Применяет современные		космических снимка территории УНБ
технологии поиска и сбора,		Предуралье и окружающей территории
обработки и организации		за 1987, 2000 и 2018 гг., а также
хранения, использования		созданные на основе этих снимков
профессионально значимой		мультивременные синтезы каналов и
информации		картографический слой вырубок. Слой
		вырубок создается путем визуального
		дешифрирования (оцифровки) объектов
		по мультивременным изображениям

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.4.1	Анализ изменений	Студент освоил содержание следующих
Применяет ГИС-технологии и	природных и	разделов курса: Анализ изменений
программное обеспечение при	антропогенных объектов по	природных и антропогенных объектов
работе с пространственными	разновременным	по разновременным космическим
данными	космическим снимкам	снимкам; «Основы автоматизированного
ОПК.5.2	Защищаемое контрольное	дешифрирования снимков,
Применяет для решения	мероприятие	классификация изображений». Студент
типовых задач инструменты		владеет основами тематической
геоинформационных систем		интерпретации космических снимков,
ПК.6.1		способен решать задачи
Применяет современные		дешифрирования объектов (на примере
технологии поиска и сбора,		сельскохозяйственных угодий),
обработки и организации		комбинируя автоматизированные и
хранения, использования		визуально-интерактивные методы
профессионально значимой		визуально-интерактивные методы
информации ПК.4.1	Подготовка к итоговому	Студент показывает знания по
Применяет ГИС-технологии и	_	теоретической части курса
программное обеспечение при	контрольному	•
работе с пространственными	мероприятию	«Аэрокосмические методы
данными	Итоговое контрольное	исследований». Знание терминологии,
ОПК.5.2	мероприятие	физических основ аэрокосмических
Применяет для решения		методов исследований, методов
типовых задач инструменты		регистрации излучения, дешифровочных
геоинформационных систем		признаков, видов и технологических
ПК.6.1		схем дешифрирования. Умение
Применяет современные		дешифрировать многозональные
технологии поиска и сбора,		космические снимки и создавать
обработки и организации		тематическую карту по цифровым
хранения, использования		космическим снимкам на основе
профессионально значимой		компьютерной классификации.
информации		Владение навыками дешифрирования и
		компьютерной обработки цифровых
		снимков.

Спецификация мероприятий текущего контроля

Понятие о дешифрировании снимков. Дешифровочные признаки природных и антропогенных объектов. Визуально-интерактивное дешифрирование.

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы самостоятельной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	Баллы

Выполнена векторизация вырубок, определен период их появления и рассчитана площадь	10
Заполнена атрибутивная таблица - период появления вырубки и площадь для каждого	10
объекта	
Отсутствуют существенные ошибки (пропуск и ложное выделение объектов)	5
Созданы мультивременные изображения на основе снимков 1987, 2000 и 2016 гг. и	5
проведена их настройка таким образом, чтобы визуально выделить изменения,	
произошедшие за рассматриваемый период	

Анализ изменений природных и антропогенных объектов по разновременным космическим снимкам

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы самостоятельной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 15

Показатели оценивания	Баллы
Векторный слой обрабатываемых сельхозугодий дополнен на основе снимка Sentinel-2 за	10
2018 г.	
Рассчитана площадь обрабатываемых сельхозугодий за 1987 г., создан векторный слой,	10
проведено его редактирование (удаление объектов малой площади и пр.)	
создана компоновка карты, характеризующей изменений площади обрабатываемых земель	5
за 30 лет	
Рассчитана площадь обрабатываемых сельхозугодий за 2016 г, создан векторный слой,	5
проведено его редактирование (удаление объектов малой площади и пр.)	

Подготовка к итоговому контрольному мероприятию

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы самостоятельной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 20

Показатели оценивания	Баллы
Студент знает основные свойства космических снимков, их классификации, виды и методы	10
дешифрирования	
Студент знает методы автоматизированного дешифрирования снимков и способен	10
применить их на практике	
Студент способен различать объекты на снимках на основе визуально-интерактивного	10
дешифрирования.	
Студент имеет представление о современном состоянии мирового фонда космических	10
снимков и направлении его развития	