МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра минералогии и петрографии

Авторы-составители: Казымов Константин Павлович

Чайковский Илья Иванович

Рабочая программа дисциплины

МИНЕРАЛОГИЯ С ОСНОВАМИ КРИСТАЛЛОГРАФИИ

Код УМК 58988

Утверждено Протокол №9 от «25» мая 2020 г.

1. Наименование дисциплины

Минералогия с основами кристаллографии

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: **05.03.01** Геология направленность Геофизика

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Минералогия с основами кристаллографии у обучающегося должны быть сформированы следующие компетенции:

05.03.01 Геология (направленность : Геофизика)

ОПК.5 владеть базовыми знаниями о современной научной картине мира на основе положений, законов и методов естественных наук

ПК.15 способность самостоятельно осуществлять сбор, анализ и обобщение геологической информации, использовать в научно-исследовательской деятельности навыки полевых и лабораторных исследований

4. Объем и содержание дисциплины

Направления подготовки	05.03.01 Геология (направленность: Геофизика)
форма обучения	очная
№№ триместров,	1
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	3
Объем дисциплины (ак.час.)	108
Контактная работа с	42
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	14
занятий	
Проведение лабораторных	28
работ, занятий по	
иностранному языку	
Самостоятельная работа	66
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (5)
Формы промежуточной	Зачет (1 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Минералогия с основами кристаллографии. Первый семестр

Дисциплина состоит из трёх частей.

Первая часть – "Основы кристаллографии".

Вторая часть – «Общая минералогия».

Третья часть – «Описательная минералогия».

Раздел 1. Введение в кристаллографию. Понятие о кристаллическом строении вещества. Геометрическая кристаллография

Кристаллографии как науки, о кристаллах, их внешней форме, внутреннем строении, физических свойствах, о процессах их образования в земной коре, космосе и закономерностях развития Земли в целом.

Тема 1. Введение в кристаллографию. Понятие о кристаллическом строении вещества Кристаллография. Свойства кристаллов, их строение, рост и растворение, применение, искусственное получение и т.д.

Тема 2. Геометрическая кристаллография

Симметрия вершин и ребер. Три основных элемента симметрии кристаллов – центр симметрии, плоскость симметрии и оси симметрии.

Тема 3. Инверсионные оси

Два типа сложных осей симметрии: зеркально-поворотные и инверсионные, присущи кристаллам средней категории сингоний: тетрагональной, тригональной и гексагональной.

Раздел 2. Общие понятия кристаллохимии

Основные понятия о пространственной или кристаллической решетке, как модели внутреннего строения кристаллов.

Тема 1. Структуры кристаллов

Под структурой кристалла понимается относительное пространственное расположение его материальных частиц.

При классификации структур кристалла выделяют 3 подразделения:

- 1. Структурная разность.
- 2. Структурный тип.
- 3. Структурная категория.

Тема 2. Элементы симметрии пространственной решетки

Понятия и правила определниея элементов симметрии пространственной решётки.

Раздел 3. Введение в минералогию

Понятие минерал, минералогия и связь минералогии с другими науками. Разделение минералогии. Краткие исторические аспекты минералогии как науки о минеральных формах проявления материи на Земле.

Тема 1. Понятие о минерале и минералогии

Минералогия — наука о минералах, состав, строение, свойства, условиях образования и изменения.

Тема 2. История возникновения и развития минералогии

Минералогия в глубокой древности. Расширение минералогических знаний. Исторические особенности в бронзовый и железный век. Четыре исторических периода развития минералогии.

Раздел 4. Конституция минералов

Общее понятие о конституции минералов, её структуры и составных частей.

Тема 1. Конституция минералов. Химический состав минералов

Изоморфизм о замещения атомов и ионов в узлах кристаллической решетки минерала без нарушения ее структуры.

Полиморфизм, как влияет химическое вещество, с кристаллическими решётками различных видов (различные виды симметрии и сингонии).

Тема 2. Изоморфизм и полиморфизм минералов

Изоморфизм о замещения атомов и ионов в узлах кристаллической решетки минерала без нарушения ее структуры.

Полиморфизм, как влияет химическое вещество, с кристаллическими решётками различных видов (различные виды симметрии и сингонии).

Тема 3. Формы нахождения воды в минералах

Вода и минералов чем они связаны. Вода в минералах трех типов: кристаллизационной, цеолитной и адсорбционной.

Тема 4. Кристаллохимическая структура минералов

Структурными единицами минералов являются атомы, ионы, реже молекулы. Каждое состояние электронов в атоме определяется 4-мя квантовыми числами: n, l, ml, ms. Эффективный радиус – радиус сферы действия данного структурного компонента на его окружение. Размер структурных единиц. Ионный радиус, зависимость от величины и знака заряда: чем больше положительный заряд, тем меньше его радиус; чем больше отрицательный заряд, тем больше его радиус. Ионные радиусы катионов << радиусов анионов.

Тема 5. Типы химических связей и химические формулы минералов

Химическая связь, результат движения электронов внешних (валентных) оболочек в пространстве между ядрами взаимодействующих атомов.

Главнейшими тип связи, в минералах: ионная, ковалентная, металлическая, молекулярная, донорно - акцепторная.

Тема 6. Морфология минералов

О природе минералов.

- А. Морфология минеральных индивидов.
- Б. Морфология минеральных агрегатов.

Тема 7. Двойники и эпитаксические сростки

Кристаллы двойники и сростки. 1) Параллельные сростки: все грани одного минерала параллельны граням другого. (параллельно – листоватые агрегаты). 2) Двойники: закономерное срастание двух кристаллов одного и того же минерала, в которых один индивид может быть выведен из другого отражением в плоскости, поворотом на 180 вокруг оси или путем инверсии. Количества кристаллов сростки друг с другом: двойники, тройники, четверники и т.д.

Раздел 5. Кристаллохимическая классификация минералов

Основные принципы современной кристаллохимической классификации минералов и её развитие во времени.

Тема 1. Историческое развитие классификаций минералов и современная

кристаллохимическая классификация минералов

Историческая часть развития классификации минералов. Современная кристаллохимическая классификация минералов двух принципах- кристаллическое строение минералов и химический состав.

Тема 2. Таксономические единицы современной классификации минералов и принципы их выделения

В основу принятой нами классификации положены: химический характер соединений; тип химических связей между структурными единицами минералов; их координация; тип упаковки; мотив структуры. Доминирующие признаки, выделяют, согласно закону соподчинённости, следующие таксономические единицы: 1) тип; 2) класс; 3) подкласс; 4)отдел; 5) группа; 6) минеральный вид; 7) разности; 8) разновидности.

Раздел 6. Диагностические свойства минералов

Основные диагностические свойства минералов: механические, оптические, плотность, качественные реакции, особые свойства.

Тема 1. Механические свойства

Механические диагностические свойства минералов являются внешним проявлением химического состава и кристаллической решётки минералов. Свойства: 1.Твёрдость. 2. Спайность. 3. Излом. 4. Штриховатость. 5. Хрупкость и ковкость. 6. Гибкость и упругость.

Тема 2. Оптические свойства

Оптические свойства диагностических признаков. Основная методика определения минералов под микроскопом и макроскопический.

Тема 3. Плотность минералов

Плотность (p) – главнейшая константа минералов. Определения минералов по группам плотности: низкая (p = 1,0-3,0 г/см3), средняя (p = 3,0-7,0 г/см3), высокая (p = 7,0-10,0 г/см3), очень высокая (p = 10,0 г/см3) и минералы с очень низкой плотностью (p = 10,0 г/см3).

Тема 4. Особые свойства минералов

К специфическим свойствам минералов, обусловленным, как правило, химическим составом или их структурой, относятся магнитные, электрические и радиоактивность.

Тема 5. Химические свойства минералов

Основные качественные реакции на некоторые группы минералов.

Раздел 7. Лабораторные методы исследования минеральных видов

Современные методы исследования химического сотава и структурных свойств мингерналов.

Тема 1. Физические и химические методы исследования конституции минералов Современные методы исследования химического состава и структуры минералов

Раздел 8. Генетическая минералогия. Парагенезис и парагенетические системы минералов Основные особенности минералообразования в различных условия: магматические, метаморфические,

осадочные. Дано понятие парагенезиса и парагенетических ассоциаций.

Тема 1. Магматические процессы минералообразования

Основные особенности минералообразования в различных условия: магматические, метаморфические, осадочные. Дано понятие парагенезиса и парагенетических ассоциаций.

Тема 2. Остаточные и пегматитовые расплавы

Пегматиты – специфическая группа пород, образования пегматитов:

- 1. Из магмы выделяется остаточный силикатный расплав обогащённый газами (минерализаторами): H2O, CO2, CO, HCl, HF, H2S, SO2, N2, H3BO3, H3PO4, CH4.
- 2. Давление выдавливает расплав в оболочку материнской интрузии или в боковые породы по трещинам.
- 3. Вязкость и t° кристаллизации (350-900°С) в остаточном магматическом расплаве постепенно понижаются, в результате чего начинается процесс его раскристаллизации заканчивающийся образованием пематитов.

Тема 3. Экзогенные процессы минералообразования

Экзогенные процессы минералообразования. Две большие группы: 1. минералы кор выветривания; 2. минералы осадочных пород.

Процессы, приводящие к образованию тех или иных минералов на поверхности Земли, идут последовательно и выражаются в следующей схеме: а)процессы выветривания; б) переноса; в) осадконакопления; г) диагенеза.

Тема 4. Минералообразование при метаморфизме

Горные породы, минеральные месторождения и отдельные минералы метаморфогенной группы образуются из продуктов эндогенных и экзогенных процессов, претерпевших глубокие изменения под воздействием высокой температуры, давления и различных газовых и водных растворов. При метаморфогенных процессах изменяется минеральный и химический сосав руд и горных пород, их физические свойства и в некоторых случаях форма залежей минеральных месторождений.

Тема 5. Понятие о парагенезисе и парагенетических ассоциациях минералов

Парагенетическая ассоциация минералов — это закономерная группа минералов, слагающих минеральный агрегат, совместно и почти одновременно образовавшихся на одной стадии минералообразующего процесса в одинаковых физико-химических условиях. Такие ассоциации являются устойчивыми и постоянно повторяющимися в природе.

Тема 6. Генерации минералов

Если минерал встречается в минеральном теле в нескольких разновозрастных агрегатах, то выделяют генерации (поколения) этого минерала.

Генерации минералов – это его разновозрастные индивиды, выделившиеся на разных стадиях (подстадиях) минералообразования и отличающиеся своими типоморфными особенностями.

Раздел 9. Типоморфизм минеральных индивидов

Общие понятия типоморфных минералов и типоморфных признаков их общие признаки и отличия.

Тема 1. Типоморфные минералы и типоморфные свойства минералов

Термин «типоморфный минерал» введен Ф. Бекке в 1903 г, А.Е. Ферсман 1931 году понятие о типоморфизме минералов., выделяется около 70 типоморфных минералов. Поиски полезных ископаемых. Типоморфные свойства минералов фиксировать условия, способ, время образования, типоморфными особенностями указывать на генезис.

Раздел 10. Описательная минералогия

Приведены все основные диагностические свойства минералов по программе студентов первого курса.

Тема 1. Простые вещества, сульфиды и близкие минералы

Тип 1. Простые вещества, относятся к гомоатомным минералам. Образуются более чем 30 химическими

элементами (30 минералов), а сумма всех простых веществ не превышает 0,1% массы земной коры. Тип 2. Сульфиды и близкие к ним минералы

Относятся сернистые, селенистые, теллуристые, мышьяковистые и сурьмянистые соединения минералов.

Тип 3. Сульфидов объединяет более 250 минералов, которые составляют 0,15% всей земной коры.

Тема 2. Кислородные соединения

Известно более 150 минералов, которые составляют около 5% общего веса земной коры. Наиболее распространенные катионы: Fe (около 50 минералов), Al, Ti. Основой кристаллической структуры минералов является плотнейшая упаковка ионов О2-(в оксидах) и ОН- (в гидроксидах).

Тема 3. Сульфаты

Сульфаты, соли серной кислоты (относятся около 150 минералов). Основой кристаллической структуры сульфатов является анионная группа [SO4]2-, представленная в виде тетраэдра. Кристаллизуются в низших сингониях (моноклинная и ромбическая). Морфология различна, от хорошо образованных кристаллов - лучистых, волокнистых до землистых скрытокристаллических агрегатов.

Тема 4. Карбонаты

Основные диагностические свойства минералов класса карбонатов.

Тема 5. Вольфраматы и молибдаты, фосфаты, органические соединения

Соли вольфрамовой и молибденовой кислот, класс соли фосфорной кислоты. Согласно современной номенклатуре минералов, в числе минералов рассматриваются некоторые из природных солеподобных органических соединений (оксалаты, меллитаты, ацетаты и др), объединяемые в класс органические вещества.

Тема 6. Островные, кольцевые силикаты

Среди силикатов это наиболее многочисленный подкласс минералов, который характеризуется наиболее разнообразным составом катионов: Fe, Ca, Mg, Mn, Ti, Al, редкие земли, Th, Zr, Nb, Ta и др. К числу породообразующих и наиболее широко распространенных в природе минералов относятся минералы групп: оливина, граната, эпидота, кианита, сфена, циркона.

Тема 7. Цепочечные силикаты (цепочечные, ленточные)

В основе структуры лежат кремнекислородные цепочки. Эти цепочки объединяются в структуру кристалла за счет катионов, связывающихся со свободными валентностями кислорода. Основная масса цепочечных силикатов имеет магматическое происхождение, т.к. они являются главными породообразующими минералами ультраосновных, основных, средних и частично щелочных горных пород. Большая группа минералов образуется в процессах регионального и контактового метаморфизма.

Тема 8. Силикаты и алюмосиликаты с непрерывными слоями кремнекислородных и алюмокислородных тетраэдров (слоистые силикаты)

Силикаты и алюмосиликаты с непрерывными слоями кремнекислородных и алюмокислородных тетраэдров (слоистые силикаты).

Тема 9. Каркасные силикаты и алюмосиликаты

К подклассу каркасных силикатов относятся весьма распространенные соединения, большинство которых являются важнейшими породообразующими минералами. Для многих представителей этого подкласса характерно явление мимитизации, т.е. приближение по внешней форме к кристаллам с высшей симметрией.

Тема 10. Составление альбома минералов

Цель работы: самостоятельный отбор информации из учебной литературы и ее оформление в виде альбома, структура которого обеспечивает быстрый поиск необходимых сведений при изучении минералогии, геохимии, петрографии, геологии месторождений полезных ископаемых, гидрогеологии и инженерной геологии.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Казымов К. П., Коротченкова О. В. Минералогия с основами кристаллографии. Описательная минералогия и геометрическая кристаллография: учебное пособие для студентов вузов/К. П. Казымов, О. В. Коротченкова.-Пермь:Пермский государственный национальный исследовательский университет, 2018, ISBN 978-5-7944-3056-1.-90.-Библиогр.: с. 85 https://elis.psu.ru/node/511004
- 2. Минералогия с основами кристаллографии : учебное пособие для академического бакалавриата / В. А. Буланов, А. И. Сизых, А. А. Белоголов ; под научной редакцией Ф. А. Летникова. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2019. 230 с. (Бакалавр. Академический курс). ISBN 978-5-534-07310-2. Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/438854

Дополнительная:

- 1. Бетехтин А. Г. Курс минералогии: учебное пособие/А. Г. Бетехтин ; ред.: Б. И. Пирогов, Б. Б. Шкурский.-Москва:Книжный дом "Университет", 2008, ISBN 978-5-98227-122-8.-736.-Библиогр.: с. 704-716
- 2. Васильев Д. М. Физическая кристаллография: учебное пособие для металлургических специальностей вузов/Д. М. Васильев.-Москва: Металлургия, 1981.-248.-Библиогр. в конце глав
- 3. Егоров-Тисменко Ю. К. Кристаллография и кристаллохимия: учебник для студентов вузов, обучающихся по специальности "Геология"/Ю. К. Егоров-Тисменко.-Москва: Книжный дом "Университет", 2005, ISBN 5-98227-095-4.-592.-Библиогр.: с. 583-585
- 4. Булах А. Г. Общая минералогия: учебник для студентов университетов, обучающихся по направлению "Геология"/А. Г. Булах.-Санкт-Петербург: Издательство Санкт-Петербургского университета, 2002, ISBN 5-288-03032-4.-356.-Библиогр.: с. 331-332

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://elibrary.ru Научная электронная библиотека eLIBRARY.ru http://znanium.com Электронно-библиотечная система Znanium.com

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Минералогия с основами кристаллографии** предполагает использование следующего программного обеспечения и информационных справочных систем: Презентационные материалы (слайды по темам лекционных и практических занятий); доступ в режиме on-line в Электронную библиотечную систему (ЭБС); доступ в электронную информационнообразовательной среду университета.

Перечень необходимого лицензионного и (или) свободно распространяемого программного обеспечения:

- 1.Офисный пакет приложений.
- 2. Приложение позволяющее просматривать и воспроизводить медиаконтент PDF-файлов.
- 3. Программы, демонстрации видео материалов (проигрыватель).
- 4. Офисный пакет приложений «LibreOffice».
- 5. Дисциплина не предусматривает использования специализированного обеспечения.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Учебная аудитория для лекционных занятий, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Учебная аудитория для лаборатолроных занятий, групповых и индивидуальных консультации: «Коллекционная лаборатория минералогии и кристаллографии». Состав оборудования, учебнонаглядное пособие определено в паспорте лаборатории.

Аудитория для самостоятельной работы помещение научной библиотеки ПГНИУ, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», обеспеченный доступом в электронную информационно-образовательную среду университета, «Коллекционная лаборатория минералогии и кристаллографии». Состав оборудования, учебно-наглядное пособие определено в паспорте лаборатории.

Учебная аудитория для текущего контроля и промежуточной аттестации: «Коллекционная лаборатория минералогии и кристаллографии». Состав оборудования, учебно-наглядное пособие определено в

паспорте лаборатории.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Минералогия с основами кристаллографии

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ОПК.5	Знать терминологию и	Неудовлетворител
владеть базовыми	основные понятия	Не знает терминологию и основные понятия
знаниями о	используемые в теории и	используемые в теории и практике
современной научной	практике кристаллографии,	кристаллографии, физические и химические
картине мира на основе	физические и химические	свойства и способы образования минералов.
положений, законов и	свойства и способы	Не умеет определять минералогическую
методов естественных	образования минералов.	ассоциацию, определять по минеральным
наук	Уметь определять	ассоциациям происхождение агрегата.
	минералогическую ассоциацию,	Не владеет базовыми знаниями метода
	определять по минеральным	анализа генетических причин зарождения и
	ассоциациям происхождение	роста кристаллов, алгоритмов процессов
	агрегата.	кристаллообразования в определенных
	Владеть базовыми знаниями	обстановках, представлениями о типах
	метода анализа генетических	изоморфизма и его причинах.
	причин зарождения и роста	Удовлетворительн
	кристаллов, алгоритмов	Знает терминологию и основные понятия
	процессов	используемые в теории и практике
	кристаллообразования в	кристаллографии, физические и химические
	определенных обстановках,	свойства и способы образования минералов.
	представлениями о типах	Умеет частично выделять главные и
	изоморфизма и его причинах.	некоторые второстепенные критерии оценки кристаллов.
		Владеет представлением о принципах
		построения моделей кристаллов,
		базовыми знаниями метода анализа
		генетических причин зарождения и роста
		кристаллов, алгоритмов процессов
		кристаллообразования в определенных
		обстановках, представлениями о типах
		изоморфизма и его причинах.
		Хорошо
		Знает основы деятельности связанной с
		диагностикой кристаллов, алгоритм
		геологических и физико-химических
		условий образования кристаллов.
		Умеет работать с понятиями,
		терминологической базой,

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Хорошо профессиональной лексикой. Владеет частичными знаниями методологией дисциплины при решении типовых задач, использует в качестве аргументации практические примеры.
ПК.15 способность самостоятельно осуществлять сбор, анализ и обобщение геологической информации, использовать в научно- исследовательской деятельности навыки полевых и лабораторных исследований	Знать терминологию и основные понятия используемые в теории и практике генетической минералогии, основные теории роста и минералообразующие среды. Уметь осуществлять генетическую оценку процессов образования минералов, имеет представление о принципах построения генетической модели минералообразования, написать радикал для каждого структурного мотива кремнекислородных тетраэдров.	Отлично Знает терминологию и основные понятия используемые в теории и практике кристаллографии, физические и химические свойства и способы образования минералов. Умеет определять минералогическую ассоциацию, определять по минеральным ассоциациям происхождение агрегата. Владеет базовыми знаниями метода анализа генетических причин зарождения и роста кристаллов, алгоритмов процессов кристаллообразования в определенных обстановках, представлениями о типах изоморфизма и его причинах. Неудовлетворител Не знает терминологию и основные понятия используемые в теории и практике генетической минералогии. Не умеет осуществлять генетическую оценку процессов образования минералов, имеет представление о принципах построения генетической модели минералообразования. Не владеет базовыми знаниями о современной научной картине мира на основе положений, законов и методов естественных наук. Удовлетворительн Знает частично терминологию и основные понятия используемые в теории и практике генетической минералогии. Умеет осуществлять генетическую оценку процессов образования минералов, имеет представление о принципах построения генетической минералогии. Умеет осуществлять генетическую оценку процессов образования минералов, имеет представление о принципах построения генетической модели минералообразования. Владеет частичными базовыми знаниями о современной научной картине мира на основе положений, законов и методов

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Удовлетворительн
		естественных наук.
		Хорошо
		Знает терминологию и основные понятия
		используемые в теории и практике
		генетической минералогии.
		Умеет частично осуществлять генетическую оценку процессов образования минералов,
		имеет представление о принципах
		построения генетической модели
		минералообразования.
		Владеет базовыми знаниями о современной
		научной картине мира на основе положений,
		законов и методов естественных наук.
		Отлично
		Знает терминологию и основные понятия
		используемые в теории и практике
		генетической минералогии.
		Умеет осуществлять генетическую оценку
		процессов образования минералов, имеет
		представление о принципах построения
		генетической модели минералообразования.
		Владеет базовыми знаниями о современной
		научной картине мира на основе положений,
		законов и методов естественных наук.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: СУОС

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 48 до 60

«неудовлетворительно» / «незачтено» менее 48 балла

Компетенция	Мероприятие	Контролируемые элементы результатов обучения
D	текущего контроля	
Входной контроль	Тема 2. Геометрическая	Знание геометрий и химий, элементов
	кристаллография	физической географии.
	Входное тестирование	
ОПК.5	Тема 2. Геометрическая	Владеет определением форм кристаллов.
владеть базовыми знаниями о	кристаллография	
современной научной картине	Письменное контрольное	
мира на основе положений,	мероприятие	
законов и методов естественных		
наук		
ОПК.5	Тема 2. Элементы	Умение определение группы симметрии
владеть базовыми знаниями о	симметрии	или классов в кристаллографии.
современной научной картине	пространственной решетки	
мира на основе положений,	Письменное контрольное	
законов и методов естественных	мероприятие	
наук		
ПК.15	Тема 1. Типоморфные	Знает свойство минералов, фиксировать
способность самостоятельно	минералы и типоморфные	условия, способ, время образования.
осуществлять сбор, анализ и	свойства минералов	
обобщение геологической	Итоговое контрольное	
информации, использовать в	мероприятие	
научно-исследовательской	1 F	
деятельности навыки полевых и		
лабораторных исследований		

Компетенция	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ПК.15 способность самостоятельно осуществлять сбор, анализ и обобщение геологической информации, использовать в научно-исследовательской деятельности навыки полевых и лабораторных исследований	Тема 5. Вольфраматы и молибдаты, фосфаты, органические соединения Письменное контрольное мероприятие	Умение выявлять характерные признаки самородных, оксидных, сульфидных, карбонатных и сульфатных минералов.
ПК.15 способность самостоятельно осуществлять сбор, анализ и обобщение геологической информации, использовать в научно-исследовательской деятельности навыки полевых и лабораторных исследований	Тема 9. Каркасные силикаты и алюмосиликаты Письменное контрольное мероприятие	Умение выявлять характерные признаки силикатных минералов.
ОПК.5 владеть базовыми знаниями о современной научной картине мира на основе положений, законов и методов естественных наук	Тема 10. Составление альбома минералов Письменное контрольное мероприятие	Умение работать с литературными источниками.

Спецификация мероприятий текущего контроля

Тема 2. Геометрическая кристаллография

Продолжительность проведения мероприятия промежуточной аттестации: **.5 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: ${f 0}$

Проходной балл: 0

Показатели оценивания Бал	Баллы	
---------------------------	-------	--

Тема 2. Геометрическая кристаллография

Продолжительность проведения мероприятия промежуточной аттестации: **.25 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 5

Проходной балл: 2.5

Показатели оценивания	
Полностью и правильно определены сингония и простые формы всех 3 кристаллов из	5
контрольной коллекции.	
Полностью и правильно определены сингония и простые формы всех 2 кристаллов из	5
контрольной коллекции.	

Тема 2. Элементы симметрии пространственной решетки

Продолжительность проведения мероприятия промежуточной аттестации: .25 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 19

Показатели оценивания	
Полностью и правильно получены ответы на все 10 вопросов	40
Полностью и правильно получены ответы на 8 вопросов	
Полностью и правильно получены ответы на 6 вопросов	24
Полностью и правильно получены ответы на 4 вопроса	16

Тема 1. Типоморфные минералы и типоморфные свойства минералов

Продолжительность проведения мероприятия промежуточной аттестации: .25 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 19

Показатели оценивания	Баллы
Полностью и правильно получены ответы на все 10 вопросов	40
Полностью и правильно получены ответы на 8 вопросов	32
Полностью и правильно получены ответы на 6 вопросов	24
Полностью и правильно получены ответы на 4 вопроса	16.5

Тема 5. Вольфраматы и молибдаты, фосфаты, органические соединения

Продолжительность проведения мероприятия промежуточной аттестации: .25 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 5

Проходной балл: 2.5

Показатели оценивания	
Полностью и правильно определены цвет, твердость, цвет черты, минеральные	5
ассоциации, название и химическая формула всех 5 минералов из контрольной коллекции.	
Полностью и правильно определены цвет, твердость, цвет черты, минеральные	4
ассоциации, название и химическая формула всех 4 минералов из контрольной коллекции	
Полностью и правильно определены цвет, твердость, цвет черты, минеральные	3
ассоциации, название и химическая формула всех 3 минералов из контрольной коллекции	
Полностью и правильно определены цвет, твердость, цвет черты, минеральные	2
ассоциации, название и химическая формула всех 2 минералов из контрольной коллекции	

Тема 9. Каркасные силикаты и алюмосиликаты

Продолжительность проведения мероприятия промежуточной аттестации: .25 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 5

Проходной балл: 2.5

Показатели оценивания	Баллы	

Полностью и правильно определены цвет, твердость, цвет черты, минеральные	5
ассоциации, название и химическая формула всех 5 силикатных минералов из контрольной	
коллекции.	
Полностью и правильно определены цвет, твердость, цвет черты, минеральные	4
ассоциации, название и химическая формула всех 4 силикатных минералов из контрольной	
коллекции.	
Полностью и правильно определены цвет, твердость, цвет черты, минеральные	3
ассоциации, название и химическая формула всех 3 силикатных минералов из контрольной	
коллекции.	
Полностью и правильно определены цвет, твердость, цвет черты, минеральные	2
ассоциации, название и химическая формула всех 2 силикатных минералов из контрольной	
коллекции.	

Тема 10. Составление альбома минералов

Продолжительность проведения мероприятия промежуточной аттестации: **.25 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **5** Проходной балл: **2.5**

Показатели оценивания	Баллы
В альбоме минералов полностью и правильно описаны все 104 минерала	5
В альбоме минералов диагностические признаки приведены для всех минералов минимум на 80 %	4
В альбоме минералов диагностические признаки приведены для всех минералов минимум на 60 %	3
В альбоме минералов диагностические признаки приведены для всех минералов минимум на 40 %	2