МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра радиоэлектроники и защиты информации

Авторы-составители: Ощепков Александр Юрьевич Марценюк Михаил Андреевич

Рабочая программа дисциплины

СТАТИСТИЧЕСКАЯ РАДИОФИЗИКА

Код УМК 46276

Утверждено Протокол №4 от «24» июня 2020 г.

1. Наименование дисциплины

Статистическая радиофизика

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в базовую часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 03.03.03 Радиофизика

направленность Электроника, микро- и наноэлектроника

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Статистическая радиофизика у обучающегося должны быть сформированы следующие компетенции:

03.03.03 Радиофизика (направленность : Электроника, микро- и наноэлектроника)

ОПК.7 способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач

4. Объем и содержание дисциплины

Направления подготовки	03.03.03 Радиофизика (направленность: Электроника, микро- и		
	наноэлектроника)		
форма обучения	очная		
№№ триместров,	11		
выделенных для изучения			
дисциплины			
Объем дисциплины (з.е.)	3		
Объем дисциплины (ак.час.)	108		
Контактная работа с	42		
преподавателем (ак.час.),			
в том числе:			
Проведение лекционных	14		
занятий			
Проведение лабораторных	28		
работ, занятий по			
иностранному языку			
Самостоятельная работа	66		
(ак.час.)			
Формы текущего контроля	Итоговое контрольное мероприятие (1)		
	Письменное контрольное мероприятие (2)		
Формы промежуточной	Зачет (11 триместр)		
аттестации			

5. Аннотированное описание содержания разделов и тем дисциплины

Статистическая радиофизика. Первый семестр

Введение. Цели и задачи курса

Примеры приложений

Компьютерное моделирование шумов

Объекты изучения статистической радиофизики

Случайные процессы и методы их описания

Случайная переменная. Виды случайных переменных

Параметры случайной переменной

Система случайных величин

Случайная функция времени (случайный процесс)

Модели случайных процессов. Линейные фильтры

Винеровский (диффузионный) процесс

Марковские процессы. Уравнение Фоккера-Планка

Колебания, модулированные шумом. Амплитудная, фазовая, частотная модуляции

Импульсные случайные процессы

Теорема Котельникова для случайных процессов

Модели случайных процессов. Нестационарные процессы

Гауссовский случайный процесс

Узкополосный стационарный шум

Узкополосный гауссовский шум. Распределение Релея

Суперпозиция гармонического сигнала и гауссовского шума. Обобщенное распределение Релея.

Узкополосный негауссовский шум

Шумовые колебания в линейных системах.

Свойства и математические модели линейных систем

Тема 19. Частотный и временной подходы к рассмотрению линейных систем

Передаточная функция систем с сосредоточенными параметрами

Функция Грина систем с сосредоточенными параметрами

Фильтрация шумов линейными системами

Прием сигнала в присутствии шумов

Шумовые колебания в нелинейных системах

Нелинейные преобразования в радиофизике. Примеры нелинейностей.

Безынерционные преобразования. Способ представления нелинейных инерционных устройств

Умножение частоты (генерация гармоник)

Амплитудное детектирование. Квадратичный детектор для гауссовского шума.

Случайные переменные

Знакомство со стандартными генераторами случайных чисел (ГСЧ), входящих в состав пакета MathCad

Моделирование случайных процессов

Моделирование случайных процессов. Определение параметров процессов.

Системы случайных переменных

Моделирование системы случайных переменных. Характеристики этих процессов.

Неравенство Чебышева, центральная предельная теорема

Проверка центральной предельной теоремы. Проверка неравенства Чебышева

Детерминированные сигналы. Преобразования Фурье, спектры

Моделирование детерминированных сигналов.

Детерминированные сигналы. Корреляционная функция. ВКФ

Нахождение КФ и ВКФ. Преобразование Гилберта

Вероятностные характеристики случайных процессов

Моделирование случайного процесса. Определение вероятностных характеристик

Спектральные характеристики случайных процессов

Выполнение преобразования Фурье, нахождение спектров, корреляционных функций

Случайный процесс. Эргодический процесс

Проверка теоремы Винера-Хинчина. Моделирование эргодического процесса, сравнение со случайным

Прохождение сигнала через линейную систему

Линейные системы. Передаточные функции. Прохождение сигнала через линейные системы.

Спектральный анализ сигналов и линейных систем

Линейные системы. Передаточные функции. Прохождение сигнала через линейные системы.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Марценюк М. А. Статистическая радиофизика:учебно-наглядное пособие/М. А. Марценюк.-Пермь, 2012, ISBN 978-5-7944-1867-5, 2-е изд..-1. http://www.campus.psu.ru/library/node/33507
- 2. Березин, Ф. А. Лекции по статистической физике / Ф. А. Березин. 2-е изд. Москва, Ижевск : Институт компьютерных исследований, 2019. 192 с. ISBN 978-5-4344-0611-6. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/91949
- 3. Ахманов С. А., Дьяков Ю. Е., Чиркин А. С. Статистическая радиофизика и оптика: Случайные колебания и волны в линейных системах/С.А. Ахманов, Ю.Е. Дьяков, А.С. Чиркин.- Москва: ФИЗМАТЛИТ, 2010, ISBN 978-5-9221-1204-8.-4253.-Библиогр. в конце глав
- 4. Далингер, В. А. Теория вероятностей и математическая статистика с применением Mathcad : учебник и практикум для прикладного бакалавриата / В. А. Далингер, С. Д. Симонженков, Б. С. Галюкшов. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 145 с. (Бакалавр. Прикладной курс). ISBN 978-5-534-10080-8. Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/434656

Дополнительная:

- 1. Спектор, А. А. Статистическая теория радиотехнических систем: учебное пособие / А. А. Спектор. Новосибирск: Новосибирский государственный технический университет, 2013. 82 с. ISBN 978-5-7782-2180-2. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/45169.html
- 2. Горячкин, О. В. Статистическая теория радиотехнических систем: учебное пособие / О. В. Горячкин. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2017. 92 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/75408.html

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://in.psu.ru/elis/ электронная библиотека ELiS

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Статистическая радиофизика** предполагает использование следующего программного обеспечения и информационных справочных систем: MathCad Prime 3.1

Операционная система ALT Linux;

Офисный пакет приложений «LibreOffice».

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Материально-техническое обеспечение дисциплины составляют лекционные аудитории, оборудованные:

Проектор, экран для проектора, компьютер (ноутбук);

Меловая (и) или маркерная доска.

Аудитории для лабораторных работ - компьютерные классы физического факультета с техническим оснащением, представленным в паспортах;

Аудитории для проведения текущего контроля;

Аудитории для групповых (индивидуальных) консультаций;

Аудитория для самостоятельной работы - компьютерные классы физического факультета и помещения библиотеки с персональными компьютерами с доступом к локальной и глобальной сетям Аудитории, обеспечивающие образовательный процесс, находятся в распоряжении высшего учебного

заведения и пригодны, в соответствии с действующими санитарными и противопожарными нормами, а также требованиями техники безопасности, для проведения учебных занятий.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.

- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Статистическая радиофизика

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
ОПК.7	знать:	Неудовлетворител
способность	- основные сведения о	не знает:
использовать базовые	случайных процессах,	- основные сведения о случайных процессах,
теоретические знания	- основные модели случайных	- основные модели случайных процессов, о
фундаментальных	процессов, о преобразовании	преобразовании сигнала при прохождении
разделов общей и	сигнала при прохождении через	через линейную и нелинейную системы,
теоретической физики	линейную и нелинейную	- основные методы борьбы с шумами,
для решения	системы,	фильтрацию;
профессиональных	- основные методы борьбы с	не умеет:
задач	шумами, фильтрацию;	- создавать модели сигналов с помощью
	уметь:	математического пакета MathCad,
	- создавать модели сигналов с	- вычислять основные спектральные и
	помощью математического	корреляционные характеристики сигналов
	пакета MathCad,	по экспериментальным данным,
	- вычислять основные	- анализировать преобразование сигналов
	спектральные и	при прохождении через линейную или
	корреляционные	нелинейную системы
	характеристики сигналов по	не владеет:
	экспериментальным данным,	навыками описания случайных процессов и
	- анализировать преобразование	
	сигналов при прохождении	Удовлетворительн
	через линейную или	частично знать:
	нелинейную системы	- основные сведения о случайных процессах,
	владеть:	- основные модели случайных процессов, о
	навыками описания случайных	преобразовании сигнала при прохождении
	процессов и использования их в	через линейную и нелинейную системы,
	радиофизике.	- основные методы борьбы с шумами,
		фильтрацию;
		частично уметь:
		- создавать модели сигналов с помощью
		математического пакета MathCad,
		- вычислять основные спектральные и
		корреляционные характеристики сигналов
		по экспериментальным данным,
		- анализировать преобразование сигналов
		при прохождении через линейную или
		нелинейную системы

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Удовлетворительн
		посредственно владеть:
		навыками описания случайных процессов и
		использования их в радиофизике.
		Хорошо
		в основном знать:
		- основные сведения о случайных процессах,
		- основные модели случайных процессов, о
		преобразовании сигнала при прохождении
		через линейную и нелинейную системы,
		- основные методы борьбы с шумами,
		фильтрацию;
		в основном уметь:
		- создавать модели сигналов с помощью
		математического пакета MathCad,
		- вычислять основные спектральные и
		корреляционные характеристики сигналов
		по экспериментальным данным,
		- анализировать преобразование сигналов
		при прохождении через линейную или
		нелинейную системы
		неуверенно владеть:
		навыками описания случайных процессов и
		использования их в радиофизике.
		Отлично
		в полной мере знать:
		- основные сведения о случайных процессах,
		- основные модели случайных процессов, о
		преобразовании сигнала при прохождении
		через линейную и нелинейную системы,
		- основные методы борьбы с шумами,
		фильтрацию;
		уметь:
		- создавать модели сигналов с помощью
		математического пакета MathCad,
		- вычислять основные спектральные и
		корреляционные характеристики сигналов
		по экспериментальным данным,
		- анализировать преобразование сигналов
		при прохождении через линейную или
		нелинейную системы
		- I
		уверенно владеть:
		навыками описания случайных процессов и
		использования их в радиофизике.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: СУОС

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция	Мероприятие	Контролируемые элементы
	текущего контроля	результатов обучения
ОПК.7	Случайные процессы и	знать основные сведения о случайных
способность использовать	методы их описания	процессах, основные модели случайных
базовые теоретические знания	Письменное контрольное	процессов, о преобразовании сигнала
фундаментальных разделов	мероприятие	при прохождении через линейную и
общей и теоретической физики		нелинейную системы, основные методы
для решения профессиональных		борьбы с шумами, фильтрацию
задач		
ОПК.7	Модели случайных	знать основные сведения о случайных
способность использовать	процессов. Линейные	процессах, основные модели случайных
базовые теоретические знания	фильтры	процессов, о преобразовании сигнала
фундаментальных разделов	Письменное контрольное	при прохождении через линейную и
общей и теоретической физики	мероприятие	нелинейную системы, основные методы
для решения профессиональных		борьбы с шумами, фильтрацию
задач		7 7 1
ОПК.7	Шумовые колебания в	знать основные сведения о случайных
способность использовать	нелинейных системах	процессах, основные модели случайных
базовые теоретические знания	Итоговое контрольное	процессов, о преобразовании сигнала
фундаментальных разделов	мероприятие	при прохождении через линейную и
общей и теоретической физики	-	нелинейную системы, основные методы
для решения профессиональных		борьбы с шумами, фильтрацию
задач		, , , , , , , , , , , , , , , , , , , ,

Спецификация мероприятий текущего контроля

Случайные процессы и методы их описания

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Ответ на все вопросы теста промежуточного контроля по пройденным темам	30
Ответ на 80% вопросов теста промежуточного контроля по пройденным темам	25
Ответ на 40% вопросов теста промежуточного контроля по пройденным темам	13
Ответ менее чем на 40% вопросов теста промежуточного контроля по пройденным темам	0

Модели случайных процессов. Линейные фильтры

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	
Ответ на все вопросы теста промежуточного контроля по пройденным темам	30
Ответ на 80% вопросов теста промежуточного контроля по пройденным темам	25
Ответ на 40% вопросов теста промежуточного контроля по пройденным темам	13
Ответ менее чем на 40% вопросов теста промежуточного контроля по пройденным темам	0

Шумовые колебания в нелинейных системах

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

40
33
17
0