МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра математического обеспечения вычислительных систем

Авторы-составители: Рябинин Константин Валентинович

Рихтер Татьяна Васильевна

Рабочая программа дисциплины

ВЫЧИСЛИТЕЛЬНАЯ ГЕОМЕТРИЯ И АЛГОРИТМЫ КОМПЬЮТЕРНОЙ ГРАФИКИ

Код УМК 66728

Утверждено Протокол №5 от «09» июня 2020 г.

1. Наименование дисциплины

Вычислительная геометрия и алгоритмы компьютерной графики

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в вариативную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: **02.03.02** Фундаментальная информатика и информационные технологии направленность Открытые информационные системы

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Вычислительная геометрия и алгоритмы компьютерной графики у обучающегося должны быть сформированы следующие компетенции:

02.03.02 Фундаментальная информатика и информационные технологии (направленность : Открытые информационные системы)

ОПК.4 готовность к участию в проведении научных исследований

ПК.4 владеть современным математическим аппаратом, фундаментальными концепциями и системными методологиями

4. Объем и содержание дисциплины

Направления подготовки	02.03.02 Фундаментальная информатика и информационные
	технологии (направленность: Открытые информационные
	системы)
форма обучения	очная
№№ триместров,	9
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	4
Объем дисциплины (ак.час.)	144
Контактная работа с	56
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	28
занятий	
Проведение практических	14
занятий, семинаров	
Проведение лабораторных	14
работ, занятий по	
иностранному языку	
Самостоятельная работа	88
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Защищаемое контрольное мероприятие (4)
	Итоговое контрольное мероприятие (1)
Формы промежуточной	Экзамен (9 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Вычислительная геометрия и алгоритмы компьютерной графики. Первый семестр

Курс обеспечивает знакомство студентов с современными технологиями компьютерной графики, алгоритмами синтеза и обработки двумерных и трёхмерных изображений.

Введение в компьютерную графику

Обзор современных технологий, методов и программных решений в области компьютерной графики.

Математические основы построения изображений

Разъяснений математических моделей хранения изрображений и математических аппаратов, необходимых для вывода изображений на экран.

Цветовые модели

Знакомство студентов с основными подходами к представлению цвета в компьютерной графике (цветовыми моделями), объяснение назначения и особенностей цветовых моделей, демонстрация перехода от одной модели к другой.

Синтез двумерных и трёхмерных изображений средствами OpenGL

Знакомство с основными технологиями и приёмами синтеза двумерных и трёхмерных изображений средствами библиотек, реализующих стандарт OpenGL.

Организация интерактивности, анимации и сложных визуальных эффектов в реальном времени

Объяснение принципов организации интерактивности и анимации; знакомство с технологиями создания сожных визуальных эффектов в реальном времени.

Программируемый графический конвейер

Знакомство студентов с программируемым графическим конвейером и шейдерами (микропрограммами для графического процессора, которые выполняют определённые этапы графического конвейера). Знакомство с языком программирования шейдеров GLSL (с его синтаксисом, типами данных и встроенными функциями).

Модели освещения

Знакомство студентов с основными подходами моделирования освещения. Вывод закона Ламберта (простейшего закона вычисления освещённости поверхности в точке). Объяснение бликовой модели Фонга. Объяснение способов вычисления нормалей к поверхности для учёта кривизны при вычислении освещения и прочих оптических эффектов. Вывод матрицы трансформации нормалей.

Кривые и поверхности

Знакомство студентов с кубическими сплайнами и кривыми Безье. Объяснение применения этих кривых в компьютерной графике. Знакомство студентов со способами хранения и генерации трёхмерных моделей (в частности, тел вращения).

Текстуры и спрайты

Знакомство студентов с понятием текстуры, способами её наложения на трёхмерные поверхности и способами фильтрации. Изучение принципов мипмэппинга.

Обработка (фильтрация) изображений

Обзор основных технологий обработки (фильтрации) изображений.

Теория фракталов

Введение в теорию фракталов. Объяснение места и назначения фракталов в компьютерной графике.

Разбор способов построения фракталов.

Оптимизация процесса визуализации

Знакомство студентов с основными подходами к оптимизации процесса визуализации и оптимизации кода шейдеров.

Сглаживание границ объектов на изображении

Объяснение проблемы ступенчатости границ объектов на изображении и способов её решения. Сравнительная характеристика различных алгоритмов сглаживания границ объектов на изображении.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Рябинин К. В. Вычислительная геометрия и алгоритмы компьютерной графики. Работа с 3D-графикой средствами OpenGL:учебное пособие для студентов, обучающихся по направлению подготовки бакалавров "Прикладная математика и информатика"/К. В. Рябинин.-Пермь:ПГНИУ,2017, ISBN 978-5-7944-2722-6.-1.-Библиогр.: с. 99 https://elis.psu.ru/node/423220
- 2. Колошкина, И. Е. Компьютерная графика: учебник и практикум для вузов / И. Е. Колошкина, В. А. Селезнев, С. А. Дмитроченко. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 233 с. (Высшее образование). ISBN 978-5-534-12341-8. Текст: электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/447417

Дополнительная:

- 1. OpenGL. Руководство по программированию/М. Ву, Т. Девис, Дж. Нейдер, Д. Шрайнер; [пер. с англ. : Е. Васильев, Е. Эрман].-4-е изд..-СПб.:Питер,2006, ISBN 5-94723-827-6.-624.
- 2. Залогова Л. А. Компьютерная графика:практикум/[науч. ред. С. В. Русаков].-М.:Лаб. Базовых Знаний,2005, ISBN 5-93208-169-4.-320.

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://www.intuit.ru/studies/courses/70/70/info Алгоритмические основы современной компьютерной графики

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Вычислительная геометрия и алгоритмы компьютерной графики** предполагает использование следующего программного обеспечения и информационных справочных систем:

доступ в режиме on-line в Электронную библиотечную систему (ЭБС);

доступ в электронную информационно-образовательной среду университета.

Необходимое лицензионное и (или) свободно распространяемое программное обеспечение:

OC Calculate Linux Desktop

Среда разработки Code::Blocks

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения лабораторных занятий - меловая и (или) маркерная доска, компьютерный класс (аппаратное и программное обеспечение определено в Паспортах компьютерных классов) Для групповых (индивидуальных) консультаций - аудитория, оснащенная меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской. Самостоятельная работа студентов: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-образовательную среду университета, помещения Научной библиотеки ПГНИУ.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
 - 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными

компьютерами с доступом к локальной и глобальной компьютерным сетям.

- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Вычислительная геометрия и алгоритмы компьютерной графики

Планируемые результаты обучения по дисциплине для формирования компетенции и критерии их оценивания

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
Компетенция ПК.4 владеть современным математическим аппаратом, фундаментальными концепциями и системными методологиями	знать основные методы генерации поверхностей, алгоритмы вычисления нормалей, базовые математические модели освещения, методы подготовки, способы настройки и алгоритмы наложения текстур на трёхмерные поверхности, основные математические методы и алгоритмы построения кривых по дискретному набору точек. УМЕТь моделировать освещении в соответствии с законом Ламберта, бликовой моделью Фонга и способом закраски полигонов по Фонгу, загружать, настраивать и накладывать на трёхмерные полигональные поверхности текстуры, строить полигональные аппроксимации тел вращения на основе сглаженной кривой в качестве	Неудовлетворител Оценка "Неудовлетворительно" ставится в том случае, студент не знает основные методы синтеза изображений средствами ЭВМ, не умеет пользоваться соответствующим математическим аппаратом и не владеет навыком написания программ для синтеза графических изображений в реальном масштабе времени. Удовлетворительн Оценка "Удовлетворительно" ставится в том случае, если студент знает лишь самые базовые приёмы синтеза изображений средствами ЭВМ, ориентируется в терминологии, но не обладает чётким знанием алгоритмов синтеза изображений и плохо ориентируется в соответствующих математических методах, а также не продемонстрировал хороших навыков программирования (как написания программ в целом, так и, в частности, программ синтеза графических изображений в реальном масштабе времени). Хорошо Оценка "Хорошо" ставится в том случае,
	образующей. ВЛАДЕТЬ основными методами разработки приложений, синтезирующих графические	если студент продемонстрировал хорошие навыки программирования (как написания программ в целом, так и, в частности, программ синтеза графических изображений в реальном масштабе времени), знает
	изображения в реальном масштабе времени.	основные приёмы синтеза изображений средствами ЭВМ, однако неуверенно ориентируется в соответствующем математическом аппарате. Отлично Оценка "Отлично" ставится в том случае, если студент продемонстрировал уверенные

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		знания основных методов синтеза
		изображений средствами ЭВМ, уверенно
		пользуется соответствующим
		математическим аппаратом и владеет
		навыком написания программ для синтеза
		графических изображений в реальном
		масштабе времени.
ОПК.4	ЗНАТЬ математические основы	Неудовлетворител
готовность к участию в	компьютерной графики,	Студент не продемонстрировал ни знаний
проведении научных	основные принципы и	математических основ компьютерной
исследований	математические модели	графики, основных принципов и
	построения двумерных и	математических моделей построения
	трёхмерных изображений	двумерных и трёхмерных изображений
	средствами современных ЭВМ.	средствами современных ЭВМ, ни умений
	УМЕТЬ использовать на	использовать на практике механизмы работы
	практике механизмы работы с	с трёхмерной аппаратно-ускоренной
	трёхмерной аппаратно-	графикой, либо в ответах содержались
	ускоренной графикой.	грубые ошибки.
		Удовлетворительн
		Студент продемонстрировал базовые знания
		математических основ компьютерной
		графики, основных принципов и
		математических моделей построения
		двумерных и трёхмерных изображений
		средствами современных ЭВМ, а также
		основные умения использовать на практике
		механизмы работы с трёхмерной аппаратно-
		ускоренной графикой, однако в ответах
		встречались существенные неточности
		формулировок и ошибки.
		Хорошо
		Студент продемонстрировал знания
		математических основ компьютерной
		графики, основных принципов и
		математических моделей построения
		двумерных и трёхмерных изображений
		средствами современных ЭВМ, а также
		умения использовать на практике механизмы
		работы с трёхмерной аппаратно-ускоренной
		графикой, однако в ответах встречались
		неточности формулировок.
		Отлично
		Студент продемонстрировал знания
		математических основ компьютерной

Компетенция	Планируемые результаты обучения	Критерии оценивания результатов обучения	
		Отлично	
		графики, основных принципов и	
		математических моделей построения	
		двумерных и трёхмерных изображений	
		средствами современных ЭВМ, а также	
		умения использовать на практике механизмы	
		работы с трёхмерной аппаратно-ускоренной	
		графикой.	

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100

«хорошо» - от 61 до 80

«удовлетворительно» - от 45 до 60

«неудовлетворительно» / «незачтено» менее 45 балла

Компетенция	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Введение в компьютерную	Знания в области алгебры, геометрии и
	графику	программирования письменный ответ
XXX 4	Входное тестирование	на вопросы теста.
ПК.4	Программируемый	Компьютерная программа (исходный
владеть современным	графический конвейер	текст и выдаваемый результат)
математическим аппаратом,	Защищаемое контрольное	
фундаментальными	мероприятие	
концепциями и системными		
методологиями		
ОПК.4		
готовность к участию в		
проведении научных		
исследований		
ПК.4	Кривые и поверхности	Компьютерная программа (исходный
владеть современным	Защищаемое контрольное	текст и выдаваемый результат)
математическим аппаратом,	мероприятие	
фундаментальными	T T	
концепциями и системными		
методологиями		
ОПК.4		
готовность к участию в		
проведении научных		
исследований		

Компетенция	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ПК.4	Текстуры и спрайты	Компьютерная программа (исходный
владеть современным	Защищаемое контрольное	1 1 1 \ ' ' '
математическим аппаратом,	мероприятие	текет и выдаваемым результату
фундаментальными	мероприятие	
концепциями и системными		
методологиями		
ОПК.4		
готовность к участию в		
проведении научных		
исследований		
ПК.4	Теория фракталов	Компьютерная программа (исходный
владеть современным	Защищаемое контрольное	текст и выдаваемый результат)
математическим аппаратом,	мероприятие	
фундаментальными		
концепциями и системными		
методологиями		
ОПК.4		
готовность к участию в		
проведении научных		
исследований		
ПК.4	Сглаживание границ	Письменный ответ на теоретический
владеть современным	объектов на изображении	вопрос из предложенного списка
математическим аппаратом,	Итоговое контрольное	
фундаментальными	мероприятие	
концепциями и системными		
методологиями		
ОПК.4		
готовность к участию в		
проведении научных		
исследований		

Спецификация мероприятий текущего контроля

Введение в компьютерную графику

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: ${f 0}$

Проходной балл: 0

Показатели оценивания	Баллы
Знания в области геометрии	5
Знания в области программирования	3
Знания в области алгебры	2

Программируемый графический конвейер

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **10** Проходной балл: **5**

Показатели оценивания	Баллы
Согласованная работа вершинного и фрагментного шейдеров, корректная работа с	5
графическим АРІ	
Вывод кольчатого прямоугольника	3
Вывод волнистого прямоугольника	2

Кривые и поверхности

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы самостоятельной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **20** Проходной балл: **9**

Показатели оценивания	Баллы
Корректное освещение	6
Корректные вычисление и трансформация нормалей	5
Корректные построение и трансформация поверхности	5
Согласованная работа вершинного и фрагментного шейдеров, корректная работа с	4
графическим АРІ	

Текстуры и спрайты

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы самостоятельной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **20** Проходной балл: **9**

Показатели оценивания	Баллы
Корректное смешивание и наложение двух текстур	9
Корректные загрузка и настройка двух текстур	6
Согласованная работа вершинного и фрагментного шейдеров, корректная работа с графическим API	5

Теория фракталов

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы самостоятельной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **20** Проходной балл: **9**

Показатели оценивания	Баллы
Корректный ввод данных пользователем, корректное и стабильное построение кривой по	6
заданным пользователем точкам (отсутствие аварийных завершений программы или	
исчезновения кривой при добавлении очередной точки)	

Корректные вычисление и трансформация нормалей, корректное освещение	5
Корректные построение, трансформация и отображение тела вращения	5
Согласованная работа вершинного и фрагментного шейдеров, корректная работа с	4
графическим АРІ	

Сглаживание границ объектов на изображении

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Знание математических основ вычислительной геометрии	13
Знание технических принципов и алгоритмов построения изображений средствами современных ЭВМ	10
Знание определений из компьютерной графики и вычислительной геометрии	7