МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра математического обеспечения вычислительных систем

Авторы-составители: Городилов Алексей Юрьевич

Рабочая программа дисциплины

ДИСКРЕТНАЯ МАТЕМАТИКА

Код УМК 96127

Утверждено Протокол №5 от «09» июня 2020 г.

1. Наименование дисциплины

Дискретная математика

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в обязательную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: **01.03.02** Прикладная математика и информатика направленность Инженерия программного обеспечения

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Дискретная математика у обучающегося должны быть сформированы следующие компетенции:

01.03.02 Прикладная математика и информатика (направленность : Инженерия программного обеспечения)

ОПК.4 Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности

Индикаторы

ОПК.4.1 Применяет навыки использования и модификации математических моделей и моделей данных для решения задач в области профессиональной деятельности

4. Объем и содержание дисциплины

Направления подготовки	01.03.02 Прикладная математика и информатика (направленность:
	Инженерия программного обеспечения)
форма обучения	канго
№№ триместров,	1
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	3
Объем дисциплины (ак.час.)	108
Контактная работа с	42
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	28
занятий	
Проведение практических	14
занятий, семинаров	
Самостоятельная работа	66
(ак.час.)	
Формы текущего контроля	Итоговое контрольное мероприятие (1)
	Письменное контрольное мероприятие (2)
Формы промежуточной аттестации	Зачет (1 триместр)

5. Аннотированное описание содержания разделов и тем дисциплины

Разлел 1. Множества и отношения

Множества

Задание множеств. Мощность множества. Операции над множествами. Представление множеств в программах.

Отношения

Прямое произведение множеств. Бинарные отношения. Свойства отношений. Представление отношений в программах. Замыкание отношений. Функциональные отношения. Отношения эквивалентности. Фактормножества. Отношения порядка.

Раздел 2. Теория графов

Основные понятия теории графов.

Основные определения, понятия, обозначения теории графов: смежность вершин, инцидентность вершин и ребер, степень вершины. Изолированные и концевые вершины, концевые ребра. Основные способы задания графов: матрицы смежности и инциденций, их свойства. Связь степеней вершин и количества ребер в графе, теорема «о рукопожатиях». Цепь, цикл, простая цепь, простой цикл. Расстояние между вершинами. Удаленность (эксцентриситет) вершины, радиус, диаметр, центр графа.

Типы графов. Операции над графами

Основные операции над графами: добавление и удаление вершины, добавление и удаление ребра, отождествление вершин, подразбиение ребра, стягивание ребра. Основные типы графов: нулевой, полный, двудольный, связный, дополнительный граф. Критерий двудольности графа. Подграф. Компонента связности. Мост, точка сочленения. Неравенство для числа ребер, числа вершин и количества компонент связности.

Обходы графов. Деревья

Эйлерова цепь, эйлеров цикл, критерии их существования, алгоритм Флери. Гамильтонова цепь, гамильтонов цикл, достаточное условие их существования. Эйлеровы и гамильтоновы графы. Определение и свойства деревьев. Корневое дерево. Задание дерева двоичным кодом, свойства двоичного кода. Нахождение центра, радиуса и диаметра дерева. Остовное дерево графа.

Экстремальные задачи теории графов

Задача коммивояжера, «жадный алгоритм». Задача о минимальном остовном дереве, алгоритмы Прима (растущее дерево) и Краскала (растущий лес). Задача о кратчайшем пути, алгоритм Дейкстры. Транзитивное замыкание. Алгоритм Флойда.

Планарность. Раскраски графов.

Отображение, сохраняющее смежность. Плоская укладка, планарность графов, необходимые условия планарности, критерий Понтрягина-Куратовского. Формула Эйлера. Правильная вершинная и реберная раскраска графов, хроматическое число, его свойства (хроматическое число полного, двудольного графов, дерева). Верхняя оценка для хроматического числа графа. Теорема о пяти красках. Теорема о четырех красках. «Жадный» алгоритм правильной раскраски. Хроматический многочлен, его свойства. Связь хроматического числа и хроматического многочлена.

Раздел 3. Булевы функции

Элементарные булевы функции

Элементарные булевы функции, способы задания булевых функций. Суперпозиция булевых функций.

Теорема о количестве булевых функций. Основные тождества. Существенные и фиктивные переменные.

Разложение булевых функций

Разложение булевых функций в полиномы Жегалкина. Разложение по переменной и по набору переменных. Совершенные дизъюнктивные и совершенные конъюнктивные нормальные формы (СДНФ и СКНФ). Карты Карно. Минимизация дизъюнктивных и конъюнктивных нормальных форм с помощью карт Карно и с помощью тождественных преобразований.

Замкнутые классы. Полные системы

Замкнутые классы булевых функций. Класс функций, сохраняющих 0, сохраняющих 1, самодвойственных функций. Сравнимость и предшествование наборов. Класс монотонных функций. Линейный полином Жегалкина, класс линейных функций. Леммы о функциях, не принадлежащих замкнутым классам. Замыкание. Полная система. Теорема о двух системах. Примеры полных систем булевых функций. Критерий Поста функциональной полноты, алгоритм проверки системы на полноту. Базис, алгоритм проверки системы на базис, примеры базисов.

Итоговая контрольная работа

Состоит из двух частей: контрольная работа (20 баллов) и теоретический коллоквиум (20 баллов). Контрольная работа содержит задачи, формулировка которых близка к реальным практическим задачам и не содержит в явном виде указания на способ решения, метод или алгоритм. Студентам необходимо самостоятельно формализовать задачу, выбрать подходящий метод или алгоритм решения, применить его и получить ответ на исходный вопрос. При оценке работ учитывается не только правильность ответа, но также правильность и обоснованность всех этапов решения. Коллоквиум состоит из нескольких теоретических вопросов. Ответы на вопросы даются письменно.

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Балюкевич Э. Л. Дискретная математика: Учебно-практическое пособие / Балюкевич Э.Л., Ковалева Л.Ф., Романников А.Н. М.: Изд. центр ЕАОИ, 2010. 176 с. ISBN 978-5-374-00334-5. Текст : электронный // Электронно-библиотечная система БиблиоТех : [сайт]. https://psu.bibliotech.ru/Reader/Book/7572
- 2. Дискретная математика : учебное пособие для вузов / Д. С. Ананичев [и др.] ; под научной редакцией А. Н. Сесекина. Москва : Издательство Юрайт, 2019 ; Екатеринбург : Изд-во Урал. ун-та. 108 с. (Университеты России). ISBN 978-5-534-08214-2 (Издательство Юрайт). ISBN 978-5-7996-1387-7 (Изд-во Урал. ун-та). Текст : электронный // ЭБС Юрайт [сайт]. https://www.urait.ru/bcode/438245

Дополнительная:

- 1. Хаггарти, Р. Дискретная математика для программистов: учебное пособие / Р. Хаггарти. Москва: Техносфера, 2012. 400 с. ISBN 978-5-94836-303-5. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/12723
- 2. Седова, Н. А. Дискретная математика. Задачи повышенной сложности : практикум для подготовки к интернет-экзамену / Н. А. Седова, В. А. Седов. Саратов : Ай Пи Эр Медиа, 2018. 97 с. ISBN 978-5-4486-0133-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. http://www.iprbookshop.ru/71561.html

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://dma.mi.ras.ru/ Журнал Дискретная математика

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине Дискретная математика предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий - аудитория, оснащенная меловой (и) или маркерной доской. Для групповых (индивидуальных) консультаций - аудитория, оснащенная меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской. Самостоятельная работа студентов: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-образовательную среду университета, помещения Научной библиотеки ПГНИУ.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux; Офисный пакет Libreoffice. Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Дискретная математика

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.4 Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности

Компетенция Компетенция Компетенция Компетенция	бласти профессиональной деятельности Компетенция Планируемые результаты Критерии оценивания результатов		
(индикатор)	обучения	Критерии оценивания результатов обучения	
	обу тепия	ooy iciinn	
ОПК.4.1	Студент знает:	Неудовлетворител	
Применяет навыки	- о соотношении между	Не сформированы знания основных понятий	
использования и	«непрерывным» и	и методов дискретной математики, включая	
модификации	«дискретным» подходами к	дискретные функции и теорию графов,	
математических	изучению различных явлений;	основных теоретико-графовых алгоритмов, а	
моделей и моделей	- о месте дискретной	также способов их реализации, основных	
данных для решения	математики в системе	понятий теории множеств и операций над	
задач в области	математического образования;	множествами;	
профессиональной	- о значении и областях	студент не умеет исследовать графы,	
деятельности	применения дискретной	находить их основные характеристики,	
	математики;	применять основные алгоритмы на графах	
	- основные понятия и методы	при решении прикладных задач,	
	дискретной математики,	преобразовывать булевы функции, строить	
	включая дискретные функции и	булевы функции с заданными свойствами,	
	теорию графов;	проверять множество булевых функций на	
	- основные теоретико-графовые	полноту.	
	алгоритмы, а также способы их	Удовлетворительн	
	эффективной реализации;	Сформированы базовые знания основных	
	- основные понятия теории	понятий и методов дискретной математики,	
	множеств и операции над	включая дискретные функции и теорию	
	множествами;	графов, основных теоретико-графовых	
	умеет:	алгоритмов, а также способов их реализации,	
	- исследовать графы, находить	основных понятий теории множеств и	
	их основные характеристики и	операций над множествами;	
	структурные особенности;	студент в целом умеет исследовать графы,	
	- применять основные	находить их основные характеристики,	
	алгоритмы на графах при	применять основные алгоритмы на графах	
	решении прикладных задач;	при решении прикладных задач,	
	- преобразовывать булевы	преобразовывать булевы функции, строить	
	функции, строить булевы	булевы функции с заданными свойствами,	
	функции с заданными	проверять множество булевых функций на	
	свойствами;	полноту.	
	- проверять множество булевых	Хорошо	
	функций на полноту;	Сформированы знания о значении и	
	- представлять множества и	областях применения дискретной	
	отношения в программах;	математики, основных понятий и методов	

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
	имеет навыки: - применения аппарата теории графов для решения прикладных задач; - применения булевых функций в логическом анализе.	Хорошо дискретной математики, включая дискретные функции и теорию графов, основных теоретико-графовых алгоритмов, а также способов их реализации, основных понятий теории множеств и операций над множествами; студент умеет исследовать графы, находить
		их основные характеристики и структурные особенности, применять основные алгоритмы на графах при решении прикладных задач, преобразовывать булевы функции, строить булевы функции с заданными свойствами, проверять множество булевых функций на полноту,
		представлять множества и отношения в программах; сформированы базовые навыки применения аппарата теории графов для решения прикладных задач, применения булевых функций в логическом анализе. Отлично
		Сформированы систематические знания о соотношении между «непрерывным» и «дискретным» подходами к изучению различных явлений, о месте дискретной математики в системе математического образования, о значении и областях применения дискретной математики, основных понятий и методов дискретной математики, включая дискретные функции и
		теорию графов, основных теоретико- графовых алгоритмов, а также способов их эффективной реализации, основных понятий теории множеств и операций над множествами; студент в совершенстве умеет исследовать
		графы, находить их основные характеристики и структурные особенности, применять основные алгоритмы на графах при решении прикладных задач, преобразовывать булевы функции, строить булевы функции с заданными свойствами,
		проверять множество булевых функций на полноту, представлять множества и

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
		Отлично
		отношения в программах;
		сформированы устойчивые навыки
		применения аппарата теории графов для
		решения прикладных задач, применения
		булевых функций в логическом анализе.

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Зачет

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ОПК.4.1 Применяет навыки использования и модификации математических моделей и моделей данных для решения задач в области профессиональной деятельности	Контрольная работа "Графы" Письменное контрольное мероприятие	Знать основные понятия теории графов. Уметь исследовать графы, находить их основные характеристики и структурные особенности; применять основные алгоритмы на графах.Владеть аппаратом теории графов для решения прикладных задач.
ОПК.4.1 Применяет навыки использования и модификации математических моделей и моделей данных для решения задач в области профессиональной деятельности	Контрольная работа "Булевы функции" Письменное контрольное мероприятие	Знать основные понятия и методы дискретной математики, включая дискретные функции. Уметь преобразовывать булевы функции, строить булевы функции с заданными свойствами; проверять множество булевых функций на полноту Владеть навыками применения булевых функций в логическом анализе.

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ОПК.4.1 Применяет навыки использования и модификации математических моделей и моделей данных для решения задач в области профессиональной деятельности	Итоговая контрольная работа Итоговое контрольное мероприятие	Знать:- основные понятия и методы дискретной математики, включая дискретные функции и теорию графов;- основные понятия теории множеств и операции над множествами. Уметь:- исследовать графы, находить их основные характеристики и структурные особенности;- применять основные алгоритмы на графах при решении прикладных задач;- преобразовывать булевы функции, строить булевы функции с заданными свойствами;- проверять множество булевых функций на полноту;- представлять множества и отношения в программах. Владеть:- аппаратом теории графов для решения прикладных задач;- навыками применения булевых функций в логическом анализе.

Спецификация мероприятий текущего контроля

Контрольная работа "Графы"

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Знает алгоритмы построения двоичного кода дерева, а также нахождения центра, радиуса и	3
диаметра дерева и умеет их применять.	
Знает приближенный алгоритм нахождения минимального гамильтонова цикла в графе и	3
умеет его применять.	
Знает основные понятия теории графов. Знает связь степеней вершин и числа ребер, числа	3
ребер, вершин и компонент связности, числа ребер в основном и дополнительном графах.	
Умеет применять формулы, связывающие число различных компонент графа.	
Умеет решать задачу сетевого планирования.	3
Знает алгоритм нахождения минимального остовного дерева и умеет его применять.	3
Знает алгоритм нахождения кратчайших путей в графе и умеет его применять.	3
Знает основные понятия теории графов. Умеет применять формулы, связывающие число	2

ребер, вершин и граней в планарном графе.	
Знает понятие хроматического числа графа и умеет его находить.	2
Знает основные понятия теории графов. Уметь исследовать графы, находить их основные характеристики.	2
Знает основные понятия ориентированных графов, умеет находить их основные характеристики.	2
Знает типы графов и умеет их определять.	1
Знает способы задания графа и их свойства.	1
Знает понятия изоморфности и планарности графов. Умеет их определять.	1
Знает понятие хроматического многочлена, умеет его находить	1

Контрольная работа "Булевы функции"

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Знает формулы разложения булевой функции по переменным. Умеет строить ДНФ, КНФ, в	6
том числе СДНФ, СКНФ, МДНФ, МКНФ	
Знает элементарные булевы функции. Умеет преобразовывать булевы функции.	6
Знает понятия полной системы и базиса. Умеет проверять множество булевых функций на	4
полноту.	
Знает замкнутые классы булевых функций и умеет определять принадлежность функции	3
им.	1
Знает замкнутые классы булевых функций. Умеет вычислять количество функций в них.	3
Знает способы задания булевых функций. Умеет строить суперпозицию функций.	3
Знает формулы разложения булевой функции по переменным. Умеет строить полином	3
Жегалкина	
Знает понятие существенных и фиктивных переменных, умеет их определять	2

Итоговая контрольная работа

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Систематическое выполнение домашних заданий, посещение занятий, решение текущих	10
задач	
Знает основные понятия и методы дискретной математики, включая дискретные функции и	6
теорию графов.3 определения или формулировки по 2 балла	

Знает основные понятия и методы дискретной математики, включая дискретные функции; Умеет преобразовывать булевы функции, строить булевы функции с заданными свойствами.Владеет навыками применения булевых функций в логическом анализе.	4
Знает и умеет применять основные алгоритмы на графах	4
Знает основные понятия и методы теории графов. Умеет формализовывать реальную производственную задачу в терминах теории графов и применять подходящий алгоритм ее решения Владеет аппаратом теории графов для решения прикладных задач.	4
Знает основные понятия и методы теории графов. Умеет формализовывать реальную производственную задачу в терминах теории графов. Умеет исследовать графы, находить их основные характеристики, обосновывать их структурные особенности	3
Знает основные понятия теории множеств и булевых функций. Умеет доказывать свойства отношений, строить фактор-множество.	3
Знает основные понятия теории множеств и операции над множествами. Умеет представлять множества и отношения в программах.	3
Умеет решать задачу сетевого планирования	3