МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра фундаментальной математики

Авторы-составители: Шилина Алла Владимировна

Скачкова Елена Александровна

Рабочая программа дисциплины

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Код УМК 80799

Утверждено Протокол №9 от «22» мая 2020 г.

1. Наименование дисциплины

Функциональный анализ

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в обязательную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 01.03.01 Математика

направленность Программа широкого профиля

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины Функциональный анализ у обучающегося должны быть сформированы следующие компетенции:

01.03.01 Математика (направленность : Программа широкого профиля)

ОПК.1 Способен применять фундаментальные знания, полученные в области математических наук, и использовать их в профессиональной деятельности

Индикаторы

ОПК.1.2 Применяет фундаментальные знания в области математики для решения прикладных задач

ПК.2 Способен апробировать результаты научно-исследовательской деятельности

Индикаторы

ПК.2.1 Готовит обзоры, аннотации, составляет рефераты и библиографии по тематике проводимых исследований

4. Объем и содержание дисциплины

Направления подготовки	01.03.01 Математика (направленность: Программа широкого
	профиля)
форма обучения	очная
№№ триместров,	7,8
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	8
Объем дисциплины (ак.час.)	288
Контактная работа с	112
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	56
занятий	
Проведение практических	56
занятий, семинаров	
Проведение лабораторных	0
работ, занятий по	
иностранному языку	
Самостоятельная работа	176
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Итоговое контрольное мероприятие (3)
	Письменное контрольное мероприятие (9)
Формы промежуточной	Экзамен (7 триместр)
аттестации	Экзамен (8 триместр)

5. Аннотированное описание содержания разделов и тем дисциплины

Функциональный анализ. Первый семестр

Функциональный

анализ — это один математики, которому уделяется большое внимание в образовательных программах ведущих мировых университетов. По своему содержанию функциональный анализ тесно связан с математическим анализом, геометрией и алгеброй, вычислительной математикой и другими важными

разделами математики. Методы функционального анализа находят широкое приложение при изучении физических, социально-экономических

финансовых процессов. Для успешного усвоения курса необходимы математического анализа, алгебры и геометрии.

В процессе изучения дисциплины студенты должны ознакомиться с основными понятиями функционального анализа,

функционального анализа, необходимые для использования в других математических дисциплинах; математические профессиональных задач, уметь применять математические методы при решении профессиональных задач, овладеть математическим аппаратом,

необходимым для профессиональной деятельности. По окончанию курса студенты должны быть способны применять

изученные методы в собственных исследованиях интерпретировать полученные результаты.

Входное контрольное мероприятие

входной контроль основан на знании элементов теории множеств Теория множеств как математическая дисциплина создана Кантором1. Теория множеств стала основой многих разделов

математики — общей топологии, общей алгебры, функционального анализа и оказала существенное влияние на современное понимание предмета математики. В первой половине XX века теоретико-множественный подход был привнесён и во многие традиционные разделы математики,

Линейные пространства и линейные отображения

Изучаются свойства различных линейных функциональных пространств и линейных отображений. Рассматриваются примеры на различных функциональных пространствах.

Топологические пространства и непрерывные отображения

Изучается понятия топологии на различных множествах. Рассматриваются свойства топологий, структура построения множества, определение его внутренности, внешности, границы, понятия предельной точки, а также точки прикосновения множества. Приводятся примеры различных топологий, в том числе отделимой.

Метрические пространства и непрерывные отображения

Вводится понятие метрики, как неотрицательной функции, определенной на некотором множестве, свойства метрики. Определяется сходимость последовательности, и свойства сходящихся последовательности. Дается определение полных пространств. Рассматривается понятие непрерывных отображений, определяется принцип сжимающих отображений.

Нормированные пространства и лно

Вводится понятие нормы, определяется свойства нормы, вводится понятия: банаховы пространства, критерий банаховости в н.п., свойства банаховых пространств, линейные непрерывные операторы, критерий непрерывности л.н.о., резольвента, спектр л.н.о., вывод резольвенты с помощью ряда

Неймана.

Гильбертовы пространства и унитарные операторы

Скалярное произведение, евклидово пространство и нормой, согласованной со скалярным произведением, полнота г.п., ортогональность векторов, ортогональное дополнение, теорема о проекции, теорема об отрезке ряда фурье, теорема об общем виде линейного непрерывного функционала

Итоговое КМ(экзамен)

проводится в виде теста по изученному материалу. Тест включает в себя как задачи для расчета числовых значений, так и задачи на вывод логических утверждений (тестовые задания открытого типа)

Функциональный анализ. Второй семестр

Темы для изучения во втором триместре включают в себя изучение теории меры и интеграла Лебега, а также

Сопряжённое пространство, слабая сходимость функционалов, спектральная теория операторов

ИЗМЕРИМЫЕ ФУНКЦИИ

Модуль Измеримые функции: определение сигма-алгебры, измеримого множества, измеримых функций,

связь сигма алгебр и отображений.

При завершении модуля пишется письменная КТ, для дополнительных баллов можно рассмотреть задачи по этому модулю.

MEPA

Рассматриваются понятия абстрактной меры, внешней меры, меры Лебега, вводится понятие свойства "почти всюду"

При завершении модуля пишется письменная КТ, для дополнительных баллов можно рассмотреть задачи по этому модулю.

ИНТЕГРАЛ ЛЕБЕГА

Тема модуля: интеграл Лебега и его свойства,

При завершении модуля пишется письменная КТ, для дополнительных баллов можно рассмотреть задачи по этому модулю.

СОПРЯЖЕННОЕ ПРОСТРАНСТВО

Пространство линейных непрерывных функционалов и его свойства

При завершении модуля пишется письменная КТ, для дополнительных баллов можно рассмотреть задачи по этому модулю.

СПЕКТР И РЕЗОЛЬВЕНТА

Рассматриваются свойства спектра и резольвенты линейного непрерывного оператора При завершении модуля пишется письменная КТ, для дополнительных баллов можно рассмотреть задачи по этому модулю.

АЛЬТЕРНАТИВА ФРЕДГОЛЬМА

Решение и исследование уравнений с помощью альтернативы Фредгольма

При завершении модуля пишется письменная КТ, для дополнительных баллов можно рассмотреть задачи по этому модулю.

Итоговое КМ(экзамен)

Итоговый контроль пишется по всем модулям курса, состоит из задач по изученным модулям

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Глазырина П. Ю. Функциональный анализ. Типовые задачи:Учебное пособие/Глазырина П. Ю..-Екатеринбург:Уральский федеральный университет, ЭБС ACB,2016, ISBN 978-5-7996-1771-4.-216. http://www.iprbookshop.ru/66213.html
- 2. Треногин В. А.,Писаревский Б. М.,Соболева Т. С. Задачи и упражнения по функциональному анализу:учебное пособие для студентов университетов, обучающихся по специальности "Математика" и "Прикладная математика"/В. А. Треногин, Б. М. Писаревский, Т. С. Соболева.-Москва:Физматлит,2002, ISBN 5-9221-0271-0.-240.-Библиогр.: с. 233-234
- 3. Богачев В. И., Смолянов О. Г. Действительный и функциональный анализ: университетский курс/В. И. Богачев, О. Г. Смолянов.-Москва: Институт компьютерных исследований, 2009, ISBN 978-5-93972-742-6.-724.
- 4. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа:[учебник]/А. Н. Колмогоров, С. В. Фомин.-Москва: ФИЗМАТЛИТ, 2006, ISBN 5-9221-0266-4.-572.-Библиогр.: с. 568-570
- 5. Дерр В. Я. Функциональный анализ/В. Я. Дерр.-Москва:Юрайт,2012, ISBN 978-5-9916-1448-1.-464.-Библиогр.: с. 460-461
- 6. Треногин В. А. Функциональный анализ:учебник/В. А. Треногин.-Москва:Физматлит,2002, ISBN 5-9221-0272-9.-488.-Библиогр.: с. 482

Дополнительная:

- 1. Очан Ю. С. Сборник задач по математическому анализу. Общая теория множеств и функций:учебное пособие/Ю. С. Очан; ред. М. Ф. Бокштейн.-Москва:Просвещение,1981.-271.
- 2. Функциональный анализ в упражнениях и задачах/Ю. И. Грибанов; Казан. гос. ун-т им. В. И. Ульянова-Ленина.Вып. 1.Метрические пространства.-Казань, 1970.-54
- 3. Кириллов А. А., Гвишиани А. Д. Теоремы и задачи функционального анализа: учебное пособие для вузов по специальностям "Математика" и "Прикладная математика"/А. А. Кириллов, А. Д. Гвишиани.-Москва: Наука, 1988, ISBN 5-02-013797-9.-3961.-Библиогр.: с. 385-388. Предм. указ.: с. 392-397
- 4. Рудин У. Функциональный анализ: учебник для вузов/У. Рудин; пер. с англ. В. Я. Лина; под ред. Е. А. Горина.-Санкт-Петербург: Лань, 2005, ISBN 5-8114-0611-8.-4433.-Библиогр.: с. 430-432
- 5. Богачев В. И., Смолянов О. Г. Действительный и функциональный анализ: университетский курс/В. И. Богачев, О. Г. Смолянов.-Москва: Институт компьютерных исследований, 2009, ISBN 978-5-93972-742-6.-724.
- 6. Осиленкер, Б. П. Задачи и упражнения по функциональному анализу: учебно-практическое пособие / Б. П. Осиленкер. Москва: Московский государственный строительный университет, ЭБС АСВ, 2015. 132 с. ISBN 978-5-7264-1186-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. http://www.iprbookshop.ru/60819.html
- 7. Очан Ю. С. Сборник задач и теорем по теории функций действительного переменного: учебное пособие для педагогических институтов/Ю. С. Очан.-Москва:Просвещение, 1965.-231.

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://biblioclub.ru/index.php?page=book&id=82613 Треногин, В.А. Функциональный анализ : учебник

http://biblioclub.ru/index.php?page=book&id=428727 Крепкогорский, В.Л. Функциональный анализ: учебное пособие

http://znanium.com/go.php?id=556115 Ревина С. В. Функциональный анализ в примерах и задачах http://eqworld.ipmnet.ru/ru/library/mathematics/calculus.htm EqWorld https://www.mathedu.ru/ MathEdu

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Функциональный анализ** предполагает использование следующего программного обеспечения и информационных справочных систем:

Для корректной работы при изучении дисциплины необходимо использовать:

- 1. презентационные материалы (слайды по темам лекционных и практических занятий);
- 2. доступ в режиме on-line в Электронную библиотечную систему (ЭБС)
- 3. доступ в электронную информационно-образовательной среду университета.
- 4. доступ к онлайн-тестированию
- 5. Интернет-сервисы и электронные ресурсы (поисковые системы, электронная почта, профессиональные тематические чаты и форумы и т.д.)

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (**student.psu.ru**).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

- 1. Лекционная аудитория: проектор, экран, компьютер/ноутбук, меловая (и) или маркерная доска.
- 2. Аудитория для практических занятий и текущего контроля.
- 3. Проектор, экран, компьютер/ноутбук, меловая (и) или маркерная доска.
- 4. Групповые (индивидуальные) консультации: меловая (и) или маркерная доска.
- 5. Аудитория для самостоятельной работы помещения Научной библиотеки ПГНИУ: компьютерная техника с возможностью подключения к сети «Интернет», обеспеченная доступом в электронную информационно-образовательную среду университета.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
- 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Функциональный анализ

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.1 Способен применять фундаментальные знания, полученные в области математических наук, и использовать их в профессиональной деятельности

наук, и использовать их в профессиональной деятельности			
Компетенция	Планируемые результаты	Критерии оценивания результатов	
(индикатор)	обучения	обучения	
ОПК.1.2	ЗНАТЬ: понятия и теоремы	Неудовлетворител	
Применяет	функционального анализа,	Не знает основные понятия	
фундаментальные	которые могут использоваться	функционального анализа, методы	
знания в области	для решения прикладных задач	моделирования и решения прикладных	
математики для	УМЕТЬ: применять	задач	
решения прикладных	фундаментальные знания из	Удовлетворительн	
задач	области функционального	Знает основные понятия функционального	
	анализа для решения	анализа. Слабо знает методы	
	прикладных задач	математического моделирования с помощью	
	ВЛАДЕТЬ: методами	элементов функционального анализа. Плохо	
	функционального анализа для	знает основные формулы функционального	
	решения прикладных задач	анализа. Демонстрирует частично	
		сформированное умение производить	
		расчеты в прикладных задачах.	
		Хорошо	
		Знает основные понятия функционального	
		анализа, алгоритмы и методы	
		математического моделирования для	
		решения прикладных задач. Может	
		производить расчеты в практических	
		задачах. В целом успешные, но содержащие	
		отдельные пробелы умения производить	
		расчеты в практических заданиях.	
		Отлично	
		Знает основные понятия функционального	
		анализа, свободно применяет	
		фундаментальные знания из	
		функционального анализа для решения	
		прикладных задач	

ПК.2

Способен апробировать результаты научно-исследовательской деятельности

Компетенция (индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
ПК.2.1 Готовит обзоры,	ЗНАТЬ: методики подготовки обзоров, аннотаций по тематике	V · · · I

(индикатор)	Планируемые результаты обучения	Критерии оценивания результатов обучения
аннотации, составляет	своей профессиональной	Неудовлетворител
рефераты и	деятельности языком	функционального анализа, не умеет
библиографии по	функционального анализа	составлять обзоры и аннотации к
тематике проводимых	УМЕТЬ: готовить обзоры,	проводимым исследованиям языком
исследований	составлять рефераты по	функционального анализа, допускает
	тематике проводимых	ошибки в составлении рефератов по
	исследований, используя	проводимым исследованиям.
	понятийный аппарат и	Удовлетворительн
	алгоритмы исследований	знаком с понятиями и формулами
	функционального анализа	функционального анализа, выполнение
		обзоров и написание аннотаций вызывает
		большие затруднения. При работе с
		реферативными заданиями допускает
		серьезные ошибки.
		Хорошо
		Знает основные понятия функционального
		анализа, логические методы доказательства
		математических теорем. Умеет доказывать
		теоремы и утверждения курса. Выполняет
		обзоры и составляет аннотации к
		проводимым исследованиям. В целом
		успешные, но содержащие отдельные
		пробелы умения при выполнении
		реферативной части исследовательской
		работы не позволяют в полной мере
		добиться высоких результатов в проводимых
		исследованиях.
		Отлично
		Знает основные понятия функционального
		анализа, логические методы доказательства
		математических теорем. Умеет выполнять
		необходимые расчеты. Хорошо готовит
		обзоры и аннотации по тематике
		проводимых исследований. Хорошо
		выполняет реферативную и
		библиографическую часть этих
		исследований

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 44 до 60

«неудовлетворительно» / «незачтено» менее 44 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Входное контрольное мероприятие Входное тестирование	Основные понятия теории множеств: множества. операции над множествами, бинарные отношения, рефлексивные, транзитивные, симметричные, антисимметричные бинарные отношения. Отношения частичного порядка, отношения эквивалентности,
	T W	фактор-множество, класс эквивалентности.
ПК.2.1 Готовит обзоры, аннотации, составляет рефераты и библиографии по тематике проводимых исследований	Линейные пространства и линейные отображения Письменное контрольное мероприятие	линейные пространства и подпространства, линейная оболочка. выпуклость, линейные отображения
ПК.2.1 Готовит обзоры, аннотации, составляет рефераты и библиографии по тематике проводимых исследований	Топологические пространства и непрерывные отображения Итоговое контрольное мероприятие	топология. топологическое пространство, окрестность точки, открытое и замкнутое множество, внутренность множества, замыкание множества, граница множества, относительная топология, хаусдорфово топологическое пространство

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ПК.2.1	Метрические пространства	метрика, метрическое пространство,
Готовит обзоры, аннотации,	и непрерывные	сходимость последовательности:
составляет рефераты и	отображения	сходимость поточечная и по метрике,
библиографии по тематике	Письменное контрольное	ограниченное. вполне ограниченное
проводимых исследований	мероприятие	множество, плотное множество,
		сепарабельность, непрерывное
		отображение, принцип сжимающих
		отображений.
ПК.2.1	Нормированные	норма, нормированное пространство,
Готовит обзоры, аннотации,	пространства и лно	банахово пространство, линейный
составляет рефераты и	Письменное контрольное	непрерывный оператор, норма
библиографии по тематике	мероприятие	оператора, резольвента, ряд Неймана для
проводимых исследований		резольвенты, спектр, резольвентное
		множество, спектральный радиус
ПК.2.1	Гильбертовы пространства	скалярное произведение, норма,
Готовит обзоры, аннотации,	и унитарные операторы	согласованная со скалярным
составляет рефераты и	Письменное контрольное	произведением, равенство
библиографии по тематике	мероприятие	параллелограмма, гильбертово
проводимых исследований		пространство, унитарный оператор,
		ортогональность векторов,
		ортогональное дополнение, разложение
		пространства на прямую сумму двух
		подпространств, неравенство
		Коши-Буняковского, теорема о
		проекции, равенство Парсеваля,
		проекция вектора на подпространство,
		отрезок ряда Фурье, сопряженный
		оператор, норма сопряженного
		оператора, спектр сопряжённого
		оператора, ядро сопряжённого
		оператора, свойства сопряжённого
		оператора
ПК.2.1	Итоговое КМ(экзамен)	линейные пространства и линейные
Готовит обзоры, аннотации,	Итоговое контрольное	операторы, топологические
составляет рефераты и	мероприятие	пространства и непрерывные
библиографии по тематике		отображения, метрические
проводимых исследований		пространства: метрика, сходимость
		последовательности, сжимающее
		отображение, норма, свойства нормы,
		норма л.н.о., обратный оператор,
		резольвента, спектр, резольвентное
		множество, сопряженный оператор

Спецификация мероприятий текущего контроля

Входное контрольное мероприятие

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 0

Проходной балл: 0

Показатели оценивания	Баллы
1 задание	1
2 задание	1
5 задание	1
4 задание	1
3 задание	1

Линейные пространства и линейные отображения

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 15

Проходной балл: 7

Показатели оценивания	Баллы
тест по теме линейные пространства и линейные операторы	5
решение линейного уравнения, необходимо сделать соответствующие выводы.	5
задача на доказательство утверждения	5

Топологические пространства и непрерывные отображения

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **10**

Проходной балл: 4

Показатели оценивания	Баллы
задача на доказательство свойств топологии	4
3 задание теста	2
1 задание теста	2
2 задание теста	2

Метрические пространства и непрерывные отображения

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 10

Проходной балл: 5

Показатели оценивания	Баллы
задача на доказательство утверждения	5
4 задание письменной работы	1
2 задание письменной работы	1
3 задание письменной работы	1
5 задание письменной работы	1
1 задание письменной работы	1

Нормированные пространства и лно

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 8.4

Показатели оценивания	Баллы
Контрольная работа по теме	10
Исследование и решение операторного уравнения	
Задача на доказательство	5

Гильбертовы пространства и унитарные операторы

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 25

Проходной балл: 11

Показатели оценивания	Баллы
исследование операторного уравнения - 15 вопросов	15
контрольная работа -	5
задача на доказательство	5

Итоговое КМ(экзамен)

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 8.4

Показатели оценивания	Баллы
3 ВОПРОС: приведено исследование свойств оператора	8
1 ВОПРОС: формулировка теоремы, приведено доказательство	5
2 ВОПРОС: приведены все свойства, приведены примеры	5
4 ВОПРОС: найдена норма л.н. функционала в гильбертовом пространстве	2

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках

промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 **«хорошо» -** от 61 до 80

«удовлетворительно» - от 45 до 60

«неудовлетворительно» / «незачтено» менее 45 балла

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ОПК.1.2	ИЗМЕРИМЫЕ ФУНКЦИИ	Сигма-алгебра, измеримые
Применяет фундаментальные	Письменное контрольное	пространства, Измеримые функции.
знания в области математики	мероприятие	Свойства сигма-алгебр, связь
для решения прикладных задач		сигма-алгебр с отображениями,
ПК.2.1		критерий измеримости вещественных
Готовит обзоры, аннотации,		функций. примеры измеримых функций
составляет рефераты и		
библиографии по тематике		
проводимых исследований		
ОПК.1.2	MEPA	Мера, абстрактная мера, внешняя мера,
Применяет фундаментальные	Письменное контрольное	мера Лебега, полная мера, свойство
знания в области математики	мероприятие	"почти всюду", эквивалентные функции,
для решения прикладных задач		сходимость почти всюду, четыре типа
ПК.2.1		сходимости и связь между ними,
Готовит обзоры, аннотации,		
составляет рефераты и		
библиографии по тематике		
проводимых исследований	**********	7.7
ОПК.1.2	ИНТЕГРАЛ ЛЕБЕГА	интеграл Лебега, суммируемые функции
Применяет фундаментальные	Письменное контрольное	свойства интеграла Лебега, теорема
знания в области математики	мероприятие	Рисса Фишера
для решения прикладных задач		
ПК.2.1		
Готовит обзоры, аннотации,		
составляет рефераты и		
библиографии по тематике		
проводимых исследований		

Компетенция	Мероприятие	Контролируемые элементы
(индикатор)	текущего контроля	результатов обучения
ОПК.1.2	СОПРЯЖЕННОЕ	внешнее произведение, полунорма,
Применяет фундаментальные	ПРОСТРАНСТВО	слабая сходимость, сильная сходимость,
знания в области математики	Письменное контрольное	сопряженное пространство,
для решения прикладных задач	мероприятие	сопряженный оператор
ПК.2.1		
Готовит обзоры, аннотации,		
составляет рефераты и		
библиографии по тематике		
проводимых исследований		
ОПК.1.2	СПЕКТР И	спектр, резольвента л.н.о.,
Применяет фундаментальные	РЕЗОЛЬВЕНТА	резольвентное множество, компактный
знания в области математики	Письменное контрольное	оператор, свойства компактного
для решения прикладных задач	мероприятие	оператора, спектр компактного
ПК.2.1		оператора, альтернатива Фредгольма
Готовит обзоры, аннотации,		
составляет рефераты и		
библиографии по тематике		
проводимых исследований		
ОПК.1.2	Итоговое КМ(экзамен)	мера, сигма алгебра, измеримые
Применяет фундаментальные	Итоговое контрольное	множества, измеримые функции,
знания в области математики	мероприятие	интеграл Лебега, сопряженный
для решения прикладных задач		оператор, компактный оператор
ПК.2.1		
Готовит обзоры, аннотации,		
составляет рефераты и		
библиографии по тематике		
проводимых исследований		

Спецификация мероприятий текущего контроля

ИЗМЕРИМЫЕ ФУНКЦИИ

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 10

Проходной балл: 4.2

Показатели оцен	ивания	Баллы
1 задание		2
2 задание		2
5 задание		2
4 задание		2
3 задание		2

MEPA

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 10

Проходной балл: 4.2

Показатели оценивания	Баллы
6 задание	2
5 задание	2
задача на доказательство	2
3 задание	1
2 задание	1
1 задание	1
4 задание	1

ИНТЕГРАЛ ЛЕБЕГА

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **10**

Проходной балл: 4.2

Показатели оценивания	Баллы
доказать свойство интеграла Лебега	3
доказать свойство 3	3
вычислить интеграл Лебега от простой функции	2
вычислить интеграл Лебега от ограниченной функции	2

СОПРЯЖЕННОЕ ПРОСТРАНСТВО

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы** Максимальный балл, выставляемый за мероприятие промежуточной аттестации: **10** Проходной балл: **4.2**

Показатели оценивания	Баллы
найти продолжение л.н.ф. при условии выполнения условий теоремы Хана- Банаха	2
исследовать на слабую и сильную сходимость	2
доказать свойство ортогональности	2
найти норму л.н.ф в г.п.	1
найти сопряженный оператор в н.п.	1
найти сопряженный оператор в г.п.	1
вычислить внешнее произведение	1

СПЕКТР И РЕЗОЛЬВЕНТА

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 20

Проходной балл: 8.4

Показатели оценивания	Баллы
исследовать операторное уравнение с помощью альтернативы Фредгольма	5
найти спектр и резольвенту компактного оператора	3
найти спектр и резольвенту л.н.о	2

Итоговое КМ(экзамен)

Продолжительность проведения мероприятия промежуточной аттестации: **2 часа** Условия проведения мероприятия: **в часы аудиторной работы**

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 20

Показатели оценивания	Баллы
Найти условие разрешимости интегрального уравнения	10
исследовать свойства оператора. Ответ обосновать	10
Разложить в ряд Неймана резольвенту оператора, найти спектральный радиус	6
Найти спектр и резольвенту оператора	5
Найти спектр компактного оператора	5
Привести пример элемента из сопряженного пространства	4