МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет"

Кафедра прикладной математики и информатики

Авторы-составители: Русакова Ольга Леонидовна

Шварц Константин Григорьевич

Рабочая программа дисциплины

ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА

Код УМК 96976

Утверждено Протокол №9 от «19» мая 2020 г.

1. Наименование дисциплины

Вычислительная математика

2. Место дисциплины в структуре образовательной программы

Дисциплина входит в обязательную часть Блока « Б.1 » образовательной программы по направлениям подготовки (специальностям):

Направление: 01.03.01 Математика

направленность Программа широкого профиля

3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины **Вычислительная математика** у обучающегося должны быть сформированы следующие компетенции:

01.03.01 Математика (направленность : Программа широкого профиля)

ОПК.1 Способен применять фундаментальные знания, полученные в области математических наук, и использовать их в профессиональной деятельности

Индикаторы

ОПК.1.2 Применяет фундаментальные знания в области математики для решения прикладных задач

4. Объем и содержание дисциплины

Направления подготовки	01.03.01 Математика (направленность: Программа широкого профиля)
форма обучения	очная
№ триместров,	9
выделенных для изучения	
дисциплины	
Объем дисциплины (з.е.)	4
Объем дисциплины (ак.час.)	144
Контактная работа с	56
преподавателем (ак.час.),	
в том числе:	
Проведение лекционных	28
занятий	
Проведение практических	28
занятий, семинаров	
Самостоятельная работа	88
(ак.час.)	
Формы текущего контроля	Входное тестирование (1)
	Защищаемое контрольное мероприятие (2)
	Итоговое контрольное мероприятие (1)
Формы промежуточной	Экзамен (9 триместр)
аттестации	

5. Аннотированное описание содержания разделов и тем дисциплины

Вычислительная математика

В дисциплине "Вычислительная математика" изучаются численные методы решения основных задач математики с привлечением элементов прикладного функционального анализа, алгебры, математического анализа, теории дифференциальных уравнений. Рассматриваются базовые алгоритмы решения задач линейной алгебры, математического анализа, уравнений математической физики, интегральных уравнений. Обосновываются особенности применения этих алгоритмов в практике компьютерных вычислений. Даются навыки решения вычислительных задач на ЭВМ.

Введение

Раскрывается понятие вычислительного эксперимента.

Основы теории погрешности: абсолютная и относительная погрешность, верные значащие цифры числа в широком и узком смысле, погрешность выражения в зависимости от погрешностей величин, входящих в выражение.

Решение систем линейных алгебраических уравнений

На основе базовых теорем линейной алгебры и прикладного функционального анализа рассматриваются численные методы решение систем линейных алгебраических уравнений: метод исключения Гаусса,

метод прогонки, итерационные методы.

Определяются условия сходимости приближенного решения.

Решение алгебраических и трансцендентных уравнений

На основе базовых теорем математического анализа и прикладного функционального анализа рассматриваются численные методы решения нелинейных уравнений метод половинного деления, хорд, касательных, секущих, метод итераций для одного уравнения, для системы двух уравнений.

Приближение функций

Методами прикладного функционального анализа рассматриваются основы численного анализа. Строится приближение функций в различных функциональных пространствах..

Интерполирование функций. Формулы Ньютона. Интерполяционная формула Лагранжа. Интерполяция сплайнами

Численное интегрирование

На основе базовых понятий математического анализа формулируется задача численное интегрирование. Формула Ньютона-Котеса. Полиномы Лежандра. Квадратурная формула Гаусса.

Приближенное решение обыкновенных дифференциальных уравнений. Задача Коши

На основе теории дифференциальных уравнений излагаются приближенные решения задачи Коши. для обыкновенных дифференциальных уравнений.

Метод Эйлера. Методы Рунге-Кутта. Метод Адамса. Метод Рунге-Кутта для систем.

Краевые задачи для обыкновенных дифференциальных уравнений

На основе теории дифференциальных уравнений и прикладного функционального анализа излагаются приближенные решения

краевых задач. для обыкновенных дифференциальных уравнений.

Метод стрельбы. Редукция к задачам Коши двухточечной краевой задачи для линейного уравнения второго порядка.

Разностные методы решения краевых задач. Проекционные методы решения краевых задач.

Решение дифференциальных уравнений в частных производных

На основе основ прикладного функционального анализа излагается теория разностных схем. Уравнения в частных производных.

Параболические уравнения. Явная схема, неявная схема, схема Кранка-Николсона. Эллиптические уравнения. Решение задачи Дирихле для уравнения Лапласа методом сеток. Процесс Либмана. Ускоренный процесс Либмана. Гиперболические уравнения. Схема «крест». Определяются аппроксимация и условия устойчивости приближенного решения.

Интегральные уравнения

На основе базовых понятий прикладного функционального анализа рассматриваются численные методы решения интегральных уравнений Фредгольма и Вльтерра второго рода. методом конечных сумм и методом вырожденных ядер..

6. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины требует систематического изучения всех тем в той последовательности, в какой они указаны в рабочей программе.

Основными видами учебной работы являются аудиторные занятия. Их цель - расширить базовые знания обучающихся по осваиваемой дисциплине и систему теоретических ориентиров для последующего более глубокого освоения программного материала в ходе самостоятельной работы. Обучающемуся важно помнить, что контактная работа с преподавателем эффективно помогает ему овладеть программным материалом благодаря расстановке необходимых акцентов и удержанию внимания интонационными модуляциями голоса, а также подключением аудио-визуального механизма восприятия информации.

Самостоятельная работа преследует следующие цели:

- закрепление и совершенствование теоретических знаний, полученных на лекционных занятиях;
- формирование навыков подготовки текстовой составляющей информации учебного и научного назначения для размещения в различных информационных системах;
- совершенствование навыков поиска научных публикаций и образовательных ресурсов, размещенных в сети Интернет;
 - самоконтроль освоения программного материала.

Обучающемуся необходимо помнить, что результаты самостоятельной работы контролируются преподавателем во время проведения мероприятий текущего контроля и учитываются при промежуточной аттестации.

Обучающимся с ОВЗ и инвалидов предоставляется возможность выбора форм проведения мероприятий текущего контроля, альтернативных формам, предусмотренным рабочей программой дисциплины. Предусматривается возможность увеличения в пределах 1 академического часа времени, отводимого на выполнение контрольных мероприятий.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации.

При проведении текущего контроля применяются оценочные средства, обеспечивающие передачу информации, от обучающегося к преподавателю, с учетом психофизиологических особенностей здоровья обучающихся.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

При самостоятельной работе обучающимся следует использовать:

- конспекты лекций:
- литературу из перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля);
 - текст лекций на электронных носителях;
- ресурсы информационно-телекоммуникационной сети "Интернет", необходимые для освоения дисциплины;
- лицензионное и свободно распространяемое программное обеспечение из перечня информационных технологий, используемых при осуществлении образовательного процесса по лисциплине:
 - методические указания для обучающихся по освоению дисциплины.

8. Перечень основной и дополнительной учебной литературы

Основная:

- 1. Демидович Б. П., Марон И. А., Шувалова Э. 3. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения: учебное пособие/Б. П. Демидович, И. А. Марон, Э. 3. Шувалова; ред. Б. П. Демидович.-Санкт-Петербург:Лань, 2008, ISBN 978-5-8114-0799-6.-400.-Библиогр. в конце глав
- 2. Демидович Б. П., Марон И. А. Основы вычислительной математики: учебное пособие/Б. П. Демидович, И. А. Марон.-Санкт-Петербург:Лань, 2007, ISBN 978-5-8114-0695-1.-672.-Библиогр. в конце глав

Дополнительная:

- 1. Крылов В. И., Бобков В. В., Монастырный П. И. Интерполирование и интегрирование/В. И. Крылов, В. В. Бобков, П. И. Монастырный.-Минск: Наука и техника, 1983.-287.
- 2. Шевцов Г. С., Крюкова О. Г., Мызникова Б. И. Численные методы линейной алгебры: учебное пособие для математических направлений и специальностей/Г. С. Шевцов, О. Г. Крюкова, Б. И. Мызникова.-Санкт-Петербург: Лань, 2011, ISBN 978-5-8114-1246-4.-4941.-Библиогр.: с. 489-490
- 3. Лебедев В. И. Функциональный анализ и вычислительная математика:[учебное пособие]/В. И. Лебедев.-Москва:Физматлит,2000, ISBN 5-9221-0092-0.-296.-Библиогр.: с. 285-287
- 4. Калиткин Н. Н. Численные методы: учебное пособие для студентов вузов/Н. Н. Калиткин ; ред. А. А. Самарский.-Москва: Наука, 1978.-512.
- 5. Шварц К. Г. Численные методы. Численное решение обыкновенных дифференциальных уравнений:курс лекций/К. Г. Шварц.-Пермь,2008, ISBN 978-5-7944-1225-5.-86.-Библиогр.: с. 86
- 6. Тарунин Е. Л. Конечно-разностные методы решения уравнений в частных производных:учебное пособие по курсу "Численные методы"/Е. Л. Тарунин.-Пермь,2004, ISBN 5-7944-0468-х.-99.-Библиогр.: с. 97
- 7. Численные методы. Интегральные уравнения и некорректные задачи:методический материал/сост.: Ю. В. Девингталь, Е. Л. Тарунин.-Пермь, 2004.-44.-Библиогр.: с. 43

9. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

http://www.psu.ru/elektronnye-resursy-dlya-psu Электронные ресурсы для ПГНИУ

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Образовательный процесс по дисциплине **Вычислительная математика** предполагает использование следующего программного обеспечения и информационных справочных систем:

- доступ в режиме on-line в Электронную библиотечную систему (ЭБС);
- доступ в электронную информационно-образовательной среду университета., позволяющее просматривать и воспроизводить медиаконтент PDF-файлов «Adobe Acrobat Reader DC»; офисный пакет приложений «LibreOffice», Alt Linux;
- среда разработки программ на языке С#.

При освоении материала и выполнения заданий по дисциплине рекомендуется использование материалов, размещенных в Личных кабинетах обучающихся ЕТИС ПГНИУ (student.psu.ru).

При организации дистанционной работы и проведении занятий в режиме онлайн могут использоваться:

система видеоконференцсвязи на основе платформы BigBlueButton (https://bigbluebutton.org/). система LMS Moodle (http://e-learn.psu.ru/), которая поддерживает возможность использования текстовых материалов и презентаций, аудио- и видеоконтент, а так же тесты, проверяемые задания, задания для совместной работы.

система тестирования Indigo (https://indigotech.ru/).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий требуется аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения практических занятий - компьютерный класс. Состав оборудования определен в Паспорте компьютерного класса.

Для групповых (индивидуальных) консультаций - аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) с соответствующим программным обеспечением, меловой (и) или маркерной доской.

Для проведения текущего контроля - аудитория, оснащенная меловой (и) или маркерной доской. Самостоятельная работа студентов: аудитория, оснащенная компьютерной техникой с возможностью подключения к сети «Интернет», с обеспеченным доступом в электронную информационно-образовательную среду университета, помещения Научной библиотеки ПГНИУ.

Помещения научной библиотеки ПГНИУ для обеспечения самостоятельной работы обучающихся:

- 1. Научно-библиографический отдел, корп.1, ауд. 142. Оборудован 3 персональными компьютера с доступом к локальной и глобальной компьютерным сетям.
- 2. Читальный зал гуманитарной литературы, корп. 2, ауд. 418. Оборудован 7 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 3. Читальный зал естественной литературы, корп.6, ауд. 107а. Оборудован 5 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.
- 4. Отдел иностранной литературы, корп.2 ауд. 207. Оборудован 1 персональным компьютером с доступом к локальной и глобальной компьютерным сетям.
 - 5. Библиотека юридического факультета, корп.9, ауд. 4. Оборудована 11 персональными

компьютерами с доступом к локальной и глобальной компьютерным сетям.

6. Читальный зал географического факультета, корп.8, ауд. 419. Оборудован 6 персональными компьютерами с доступом к локальной и глобальной компьютерным сетям.

Все компьютеры, установленные в помещениях научной библиотеки, оснащены следующим программным обеспечением:

Операционная система ALT Linux;

Офисный пакет Libreoffice.

Справочно-правовая система «КонсультантПлюс»

Фонды оценочных средств для аттестации по дисциплине Вычислительная математика

Планируемые результаты обучения по дисциплине для формирования компетенции. Индикаторы и критерии их оценивания

ОПК.1 Способен применять фундаментальные знания, полученные в области математических наук, и использовать их в профессиональной деятельности

Компетенция	петенция Планируемые результаты Критерии оценивания результатов	
(индикатор)	обучения	обучения
ОПК.1.2	Знание основных методов	Неудовлетворител
Применяет	вычислительной математики.	Не знает основные методы вычислительной
фундаментальные	Умение применять методы	математики.
знания в области	вычислительной математики	Не умеет применять методы вычислительной
математики для	для решения прикладных задач	математики для решения прикладных задач
решения прикладных		Удовлетворительн
задач		Знает основные методы вычислительной
		математики.
		Умеет применять методы вычислительной
		математики для решения прикладных задач,
		но испытывает значительные трудности.
		Хорошо
		Знает основные методы вычислительной
		математики.
		Умеет применять методы вычислительной
		математики для решения прикладных задач,
		но испытывает незначительные трудности.
		Отлично
		Знает основные методы вычислительной
		математики.
		Умеет применять методы вычислительной
		математики для решения прикладных задач

Оценочные средства текущего контроля и промежуточной аттестации

Схема доставки: Базовая

Вид мероприятия промежуточной аттестации: Экзамен

Способ проведения мероприятия промежуточной аттестации: Оценка по дисциплине в рамках промежуточной аттестации определяется на основе баллов, набранных обучающимся на контрольных мероприятиях, проводимых в течение учебного периода.

Максимальное количество баллов: 100

Конвертация баллов в отметки

«отлично» - от 81 до 100 «**хорошо**» - от 61 до 80

«удовлетворительно» - от 43 до 60

«неудовлетворительно» / «незачтено» менее 43 балла

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
Входной контроль	Введение	Знать основы линейной алгебры,
•	Входное тестирование	математического анализа,
	_	дифференциальных и интегральных
		равнений, прикладного
		функционального анализа. Уметь
		применять математический аппарат этих
		дисциплин в объеме, необходимом для
		решения задач вычислительной
		математики. Владеть навыками
		преобразования алгебраических
		выражений, решения линейных и
		квадратных уравнений, систем
		линейных алгебраических выражений,
		вычисления пределов, производных
		первого и второго порядка функций
		одной и нескольких переменных,
		исследования функций одной
		переменной.
ОПК.1.2	Численное интегрирование	Знание и умение применять на практики
Применяет фундаментальные	Защищаемое контрольное	методы - решение систем линейных
знания в области математики	мероприятие	алгебраических уравнений;- решение
для решения прикладных задач		нелинейных уравнений;- решения задачи
		интерполирования таблично-заданной
		функции (сплайн-интерполяция);-
		численного интегрирование

Компетенция (индикатор)	Мероприятие текущего контроля	Контролируемые элементы результатов обучения
ОПК.1.2 Применяет фундаментальные знания в области математики для решения прикладных задач	Решение дифференциальных уравнений в частных производных Защищаемое контрольное мероприятие	Знание и умение применять на практике методы решения- задачи Коши и краевой задачи для ОДУ;- уравнений в частных производных;- интегральных уравнений Фредгольма и Вольтерра второго рода
ОПК.1.2 Применяет фундаментальные знания в области математики для решения прикладных задач	Интегральные уравнения Итоговое контрольное мероприятие	Проверяются знания основных понятий, методов вычислительной математики изученных в курсе и умение применять их на практике.

Спецификация мероприятий текущего контроля

Введение

Продолжительность проведения мероприятия промежуточной аттестации: 1 часа

Условия проведения мероприятия: в часы аудиторной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 0

Проходной балл: 0

Показатели оценивания	Баллы
Тест из 20 заданий с кратким вариантом ответа. За каждый правильный ответ 5 баллов	100

Численное интегрирование

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы самостоятельной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Лабораторная работа 3 Сплайн-интерполяция	10
Лабораторная работа 1 Численное решение систем линейных алгебраических уравнений	10
Лабораторная работа 4 Численное интегрирование	5
Лабораторная работа 2 Решение нелинейных уравнений	5

Решение дифференциальных уравнений в частных производных

Продолжительность проведения мероприятия промежуточной аттестации: 2 часа

Условия проведения мероприятия: в часы самостоятельной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 30

Проходной балл: 13

Показатели оценивания	Баллы
Лабораторная работа 5 Численное решение задачи Коши и краевой задачи для ОДУ	10
Лабораторная работа 7 Численное решение интегральных уравнений Фредгольма и	10

Вольтерра второго рода	
Лабораторная работа 6 Численное решение уравнений в частных производных	10

Интегральные уравнения

Продолжительность проведения мероприятия промежуточной аттестации: 4 часа

Условия проведения мероприятия: в часы самостоятельной работы

Максимальный балл, выставляемый за мероприятие промежуточной аттестации: 40

Проходной балл: 17

Показатели оценивания	Баллы
Практическое задание	20
Теоретический вопрос 1	10
Теоретический вопрос 2	10